Brownian motion

This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mörters, Peter
Weitere Verfasser: Peres, Y., Schramm, Oded, Werner, Wendelin 1968-
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2010
Schriftenreihe:Cambridge series on statistical and probabilistic mathematics 30
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9780511750489
003 UkCbUP
005 20160512111353.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 100412s2010||||enk o ||1 0|eng|d
020 |a 9780511750489 
100 1 |a Mörters, Peter 
245 1 0 |a Brownian motion  |c Peter Mörters and Yuval Peres ; with an appendix by Oded Schramm and Wendelin Werner 
264 1 |a Cambridge  |b Cambridge University Press  |c 2010 
300 |a 1 Online-Ressource (xii, 403 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Cambridge series on statistical and probabilistic mathematics  |v 30 
520 |a This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes. 
700 1 |a Peres, Y. 
700 1 |a Schramm, Oded 
700 1 |a Werner, Wendelin  |d 1968- 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521760188 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9780511750489  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9780511750489
_version_ 1818779682115420160
adam_text
any_adam_object
author Mörters, Peter
author2 Peres, Y.
Schramm, Oded
Werner, Wendelin 1968-
author2_role


author2_variant y p yp
o s os
w w ww
author_facet Mörters, Peter
Peres, Y.
Schramm, Oded
Werner, Wendelin 1968-
author_role
author_sort Mörters, Peter
author_variant p m pm
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9780511750489
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01896nam a2200289 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511750489</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20160512111353.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">100412s2010||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511750489</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mörters, Peter</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Brownian motion</subfield><subfield code="c">Peter Mörters and Yuval Peres ; with an appendix by Oded Schramm and Wendelin Werner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 403 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">30</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peres, Y.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schramm, Oded</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Werner, Wendelin</subfield><subfield code="d">1968-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521760188</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511750489</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9780511750489
illustrated Not Illustrated
indexdate 2024-12-18T12:04:30Z
institution BVB
isbn 9780511750489
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xii, 403 Seiten)
psigel ZDB-20-CTM
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Cambridge University Press
record_format marc
series2 Cambridge series on statistical and probabilistic mathematics
spelling Mörters, Peter
Brownian motion Peter Mörters and Yuval Peres ; with an appendix by Oded Schramm and Wendelin Werner
Cambridge Cambridge University Press 2010
1 Online-Ressource (xii, 403 Seiten)
txt
c
cr
Cambridge series on statistical and probabilistic mathematics 30
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Peres, Y.
Schramm, Oded
Werner, Wendelin 1968-
Erscheint auch als Druck-Ausgabe 9780521760188
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511750489 Volltext
spellingShingle Mörters, Peter
Brownian motion
title Brownian motion
title_auth Brownian motion
title_exact_search Brownian motion
title_full Brownian motion Peter Mörters and Yuval Peres ; with an appendix by Oded Schramm and Wendelin Werner
title_fullStr Brownian motion Peter Mörters and Yuval Peres ; with an appendix by Oded Schramm and Wendelin Werner
title_full_unstemmed Brownian motion Peter Mörters and Yuval Peres ; with an appendix by Oded Schramm and Wendelin Werner
title_short Brownian motion
title_sort brownian motion
url https://doi.org/10.1017/CBO9780511750489
work_keys_str_mv AT morterspeter brownianmotion
AT peresy brownianmotion
AT schrammoded brownianmotion
AT wernerwendelin brownianmotion