Multiplicative number theory I classical theory
Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the mo...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Cambridge studies in advanced mathematics
97 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511618314 | ||
003 | UkCbUP | ||
005 | 20151005020623.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 090915s2007||||enk o ||1 0|eng|d | ||
020 | |a 9780511618314 | ||
100 | 1 | |a Montgomery, Hugh L. | |
245 | 1 | 0 | |a Multiplicative number theory I |b classical theory |c Hugh L. Montgomery, Robert C. Vaughn |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 Online-Ressource (xvii, 552 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 97 | |
520 | |a Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises. | ||
700 | 1 | |a Vaughan, R. C. | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521849036 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107405820 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511618314 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511618314 |
---|---|
_version_ | 1818779682205597698 |
adam_text | |
any_adam_object | |
author | Montgomery, Hugh L. |
author2 | Vaughan, R. C. |
author2_role | |
author2_variant | r c v rc rcv |
author_facet | Montgomery, Hugh L. Vaughan, R. C. |
author_role | |
author_sort | Montgomery, Hugh L. |
author_variant | h l m hl hlm |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9780511618314 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01829nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511618314</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090915s2007||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511618314</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Montgomery, Hugh L.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplicative number theory I</subfield><subfield code="b">classical theory</subfield><subfield code="c">Hugh L. Montgomery, Robert C. Vaughn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 552 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">97</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vaughan, R. C.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521849036</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107405820</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511618314</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511618314 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:30Z |
institution | BVB |
isbn | 9780511618314 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xvii, 552 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Montgomery, Hugh L. Multiplicative number theory I classical theory Hugh L. Montgomery, Robert C. Vaughn Cambridge Cambridge University Press 2007 1 Online-Ressource (xvii, 552 Seiten) txt c cr Cambridge studies in advanced mathematics 97 Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises. Vaughan, R. C. Erscheint auch als Druck-Ausgabe 9780521849036 Erscheint auch als Druck-Ausgabe 9781107405820 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511618314 Volltext |
spellingShingle | Montgomery, Hugh L. Multiplicative number theory I classical theory |
title | Multiplicative number theory I classical theory |
title_auth | Multiplicative number theory I classical theory |
title_exact_search | Multiplicative number theory I classical theory |
title_full | Multiplicative number theory I classical theory Hugh L. Montgomery, Robert C. Vaughn |
title_fullStr | Multiplicative number theory I classical theory Hugh L. Montgomery, Robert C. Vaughn |
title_full_unstemmed | Multiplicative number theory I classical theory Hugh L. Montgomery, Robert C. Vaughn |
title_short | Multiplicative number theory I |
title_sort | multiplicative number theory i classical theory |
title_sub | classical theory |
url | https://doi.org/10.1017/CBO9780511618314 |
work_keys_str_mv | AT montgomeryhughl multiplicativenumbertheoryiclassicaltheory AT vaughanrc multiplicativenumbertheoryiclassicaltheory |