Multiplicative number theory I classical theory

Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Montgomery, Hugh L.
Weitere Verfasser: Vaughan, R. C.
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2007
Schriftenreihe:Cambridge studies in advanced mathematics 97
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9780511618314
003 UkCbUP
005 20151005020623.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 090915s2007||||enk o ||1 0|eng|d
020 |a 9780511618314 
100 1 |a Montgomery, Hugh L. 
245 1 0 |a Multiplicative number theory I  |b classical theory  |c Hugh L. Montgomery, Robert C. Vaughn 
264 1 |a Cambridge  |b Cambridge University Press  |c 2007 
300 |a 1 Online-Ressource (xvii, 552 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Cambridge studies in advanced mathematics  |v 97 
520 |a Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises. 
700 1 |a Vaughan, R. C. 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521849036 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781107405820 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9780511618314  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9780511618314
_version_ 1818779682205597698
adam_text
any_adam_object
author Montgomery, Hugh L.
author2 Vaughan, R. C.
author2_role
author2_variant r c v rc rcv
author_facet Montgomery, Hugh L.
Vaughan, R. C.
author_role
author_sort Montgomery, Hugh L.
author_variant h l m hl hlm
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9780511618314
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01829nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511618314</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090915s2007||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511618314</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Montgomery, Hugh L.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplicative number theory I</subfield><subfield code="b">classical theory</subfield><subfield code="c">Hugh L. Montgomery, Robert C. Vaughn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 552 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">97</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vaughan, R. C.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521849036</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107405820</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511618314</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9780511618314
illustrated Not Illustrated
indexdate 2024-12-18T12:04:30Z
institution BVB
isbn 9780511618314
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xvii, 552 Seiten)
psigel ZDB-20-CTM
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Cambridge University Press
record_format marc
series2 Cambridge studies in advanced mathematics
spelling Montgomery, Hugh L.
Multiplicative number theory I classical theory Hugh L. Montgomery, Robert C. Vaughn
Cambridge Cambridge University Press 2007
1 Online-Ressource (xvii, 552 Seiten)
txt
c
cr
Cambridge studies in advanced mathematics 97
Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises.
Vaughan, R. C.
Erscheint auch als Druck-Ausgabe 9780521849036
Erscheint auch als Druck-Ausgabe 9781107405820
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511618314 Volltext
spellingShingle Montgomery, Hugh L.
Multiplicative number theory I classical theory
title Multiplicative number theory I classical theory
title_auth Multiplicative number theory I classical theory
title_exact_search Multiplicative number theory I classical theory
title_full Multiplicative number theory I classical theory Hugh L. Montgomery, Robert C. Vaughn
title_fullStr Multiplicative number theory I classical theory Hugh L. Montgomery, Robert C. Vaughn
title_full_unstemmed Multiplicative number theory I classical theory Hugh L. Montgomery, Robert C. Vaughn
title_short Multiplicative number theory I
title_sort multiplicative number theory i classical theory
title_sub classical theory
url https://doi.org/10.1017/CBO9780511618314
work_keys_str_mv AT montgomeryhughl multiplicativenumbertheoryiclassicaltheory
AT vaughanrc multiplicativenumbertheoryiclassicaltheory