Metric diophantine approximation on manifolds
This 1999 book is concerned with Diophantine approximation on smooth manifolds embedded in Euclidean space, and its aim is to develop a coherent body of theory comparable with that which already exists for classical Diophantine approximation. In particular, this book deals with Khintchine-type theor...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1999
|
Schriftenreihe: | Cambridge tracts in mathematics
137 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511565991 | ||
003 | UkCbUP | ||
005 | 20151005020622.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 090518s1999||||enk o ||1 0|eng|d | ||
020 | |a 9780511565991 | ||
100 | 1 | |a Bernik, V. I. | |
245 | 1 | 0 | |a Metric diophantine approximation on manifolds |c V.I. Bernik, M.M. Dodson |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1999 | |
300 | |a 1 Online-Ressource (xi, 172 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge tracts in mathematics |v 137 | |
520 | |a This 1999 book is concerned with Diophantine approximation on smooth manifolds embedded in Euclidean space, and its aim is to develop a coherent body of theory comparable with that which already exists for classical Diophantine approximation. In particular, this book deals with Khintchine-type theorems and with the Hausdorff dimension of the associated null sets. After setting out the necessary background material, the authors give a full discussion of Hausdorff dimension and its uses in Diophantine approximation. A wide range of techniques from the number theory arsenal are used to obtain the upper and lower bounds required, and this is an indication of the difficulty of some of the questions considered. The authors go on to consider briefly the p-adic case, and they conclude with a chapter on some applications of metric Diophantine approximation. All researchers with an interest in Diophantine approximation will welcome this book. | ||
700 | 1 | |a Dodson, M. M. | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521432757 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511565991 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511565991 |
---|---|
_version_ | 1818779683572940800 |
adam_text | |
any_adam_object | |
author | Bernik, V. I. |
author2 | Dodson, M. M. |
author2_role | |
author2_variant | m m d mm mmd |
author_facet | Bernik, V. I. Dodson, M. M. |
author_role | |
author_sort | Bernik, V. I. |
author_variant | v i b vi vib |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9780511565991 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01725nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511565991</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020622.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090518s1999||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565991</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bernik, V. I.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metric diophantine approximation on manifolds</subfield><subfield code="c">V.I. Bernik, M.M. Dodson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 172 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">137</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This 1999 book is concerned with Diophantine approximation on smooth manifolds embedded in Euclidean space, and its aim is to develop a coherent body of theory comparable with that which already exists for classical Diophantine approximation. In particular, this book deals with Khintchine-type theorems and with the Hausdorff dimension of the associated null sets. After setting out the necessary background material, the authors give a full discussion of Hausdorff dimension and its uses in Diophantine approximation. A wide range of techniques from the number theory arsenal are used to obtain the upper and lower bounds required, and this is an indication of the difficulty of some of the questions considered. The authors go on to consider briefly the p-adic case, and they conclude with a chapter on some applications of metric Diophantine approximation. All researchers with an interest in Diophantine approximation will welcome this book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dodson, M. M.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521432757</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511565991</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511565991 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:31Z |
institution | BVB |
isbn | 9780511565991 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xi, 172 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Bernik, V. I. Metric diophantine approximation on manifolds V.I. Bernik, M.M. Dodson Cambridge Cambridge University Press 1999 1 Online-Ressource (xi, 172 Seiten) txt c cr Cambridge tracts in mathematics 137 This 1999 book is concerned with Diophantine approximation on smooth manifolds embedded in Euclidean space, and its aim is to develop a coherent body of theory comparable with that which already exists for classical Diophantine approximation. In particular, this book deals with Khintchine-type theorems and with the Hausdorff dimension of the associated null sets. After setting out the necessary background material, the authors give a full discussion of Hausdorff dimension and its uses in Diophantine approximation. A wide range of techniques from the number theory arsenal are used to obtain the upper and lower bounds required, and this is an indication of the difficulty of some of the questions considered. The authors go on to consider briefly the p-adic case, and they conclude with a chapter on some applications of metric Diophantine approximation. All researchers with an interest in Diophantine approximation will welcome this book. Dodson, M. M. Erscheint auch als Druck-Ausgabe 9780521432757 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511565991 Volltext |
spellingShingle | Bernik, V. I. Metric diophantine approximation on manifolds |
title | Metric diophantine approximation on manifolds |
title_auth | Metric diophantine approximation on manifolds |
title_exact_search | Metric diophantine approximation on manifolds |
title_full | Metric diophantine approximation on manifolds V.I. Bernik, M.M. Dodson |
title_fullStr | Metric diophantine approximation on manifolds V.I. Bernik, M.M. Dodson |
title_full_unstemmed | Metric diophantine approximation on manifolds V.I. Bernik, M.M. Dodson |
title_short | Metric diophantine approximation on manifolds |
title_sort | metric diophantine approximation on manifolds |
url | https://doi.org/10.1017/CBO9780511565991 |
work_keys_str_mv | AT bernikvi metricdiophantineapproximationonmanifolds AT dodsonmm metricdiophantineapproximationonmanifolds |