Metric diophantine approximation on manifolds

This 1999 book is concerned with Diophantine approximation on smooth manifolds embedded in Euclidean space, and its aim is to develop a coherent body of theory comparable with that which already exists for classical Diophantine approximation. In particular, this book deals with Khintchine-type theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bernik, V. I.
Weitere Verfasser: Dodson, M. M.
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1999
Schriftenreihe:Cambridge tracts in mathematics 137
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9780511565991
003 UkCbUP
005 20151005020622.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 090518s1999||||enk o ||1 0|eng|d
020 |a 9780511565991 
100 1 |a Bernik, V. I. 
245 1 0 |a Metric diophantine approximation on manifolds  |c V.I. Bernik, M.M. Dodson 
264 1 |a Cambridge  |b Cambridge University Press  |c 1999 
300 |a 1 Online-Ressource (xi, 172 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Cambridge tracts in mathematics  |v 137 
520 |a This 1999 book is concerned with Diophantine approximation on smooth manifolds embedded in Euclidean space, and its aim is to develop a coherent body of theory comparable with that which already exists for classical Diophantine approximation. In particular, this book deals with Khintchine-type theorems and with the Hausdorff dimension of the associated null sets. After setting out the necessary background material, the authors give a full discussion of Hausdorff dimension and its uses in Diophantine approximation. A wide range of techniques from the number theory arsenal are used to obtain the upper and lower bounds required, and this is an indication of the difficulty of some of the questions considered. The authors go on to consider briefly the p-adic case, and they conclude with a chapter on some applications of metric Diophantine approximation. All researchers with an interest in Diophantine approximation will welcome this book. 
700 1 |a Dodson, M. M. 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521432757 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9780511565991  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9780511565991
_version_ 1818779683572940800
adam_text
any_adam_object
author Bernik, V. I.
author2 Dodson, M. M.
author2_role
author2_variant m m d mm mmd
author_facet Bernik, V. I.
Dodson, M. M.
author_role
author_sort Bernik, V. I.
author_variant v i b vi vib
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9780511565991
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01725nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511565991</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020622.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090518s1999||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511565991</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bernik, V. I.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metric diophantine approximation on manifolds</subfield><subfield code="c">V.I. Bernik, M.M. Dodson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 172 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">137</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This 1999 book is concerned with Diophantine approximation on smooth manifolds embedded in Euclidean space, and its aim is to develop a coherent body of theory comparable with that which already exists for classical Diophantine approximation. In particular, this book deals with Khintchine-type theorems and with the Hausdorff dimension of the associated null sets. After setting out the necessary background material, the authors give a full discussion of Hausdorff dimension and its uses in Diophantine approximation. A wide range of techniques from the number theory arsenal are used to obtain the upper and lower bounds required, and this is an indication of the difficulty of some of the questions considered. The authors go on to consider briefly the p-adic case, and they conclude with a chapter on some applications of metric Diophantine approximation. All researchers with an interest in Diophantine approximation will welcome this book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dodson, M. M.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521432757</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511565991</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9780511565991
illustrated Not Illustrated
indexdate 2024-12-18T12:04:31Z
institution BVB
isbn 9780511565991
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xi, 172 Seiten)
psigel ZDB-20-CTM
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Cambridge University Press
record_format marc
series2 Cambridge tracts in mathematics
spelling Bernik, V. I.
Metric diophantine approximation on manifolds V.I. Bernik, M.M. Dodson
Cambridge Cambridge University Press 1999
1 Online-Ressource (xi, 172 Seiten)
txt
c
cr
Cambridge tracts in mathematics 137
This 1999 book is concerned with Diophantine approximation on smooth manifolds embedded in Euclidean space, and its aim is to develop a coherent body of theory comparable with that which already exists for classical Diophantine approximation. In particular, this book deals with Khintchine-type theorems and with the Hausdorff dimension of the associated null sets. After setting out the necessary background material, the authors give a full discussion of Hausdorff dimension and its uses in Diophantine approximation. A wide range of techniques from the number theory arsenal are used to obtain the upper and lower bounds required, and this is an indication of the difficulty of some of the questions considered. The authors go on to consider briefly the p-adic case, and they conclude with a chapter on some applications of metric Diophantine approximation. All researchers with an interest in Diophantine approximation will welcome this book.
Dodson, M. M.
Erscheint auch als Druck-Ausgabe 9780521432757
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511565991 Volltext
spellingShingle Bernik, V. I.
Metric diophantine approximation on manifolds
title Metric diophantine approximation on manifolds
title_auth Metric diophantine approximation on manifolds
title_exact_search Metric diophantine approximation on manifolds
title_full Metric diophantine approximation on manifolds V.I. Bernik, M.M. Dodson
title_fullStr Metric diophantine approximation on manifolds V.I. Bernik, M.M. Dodson
title_full_unstemmed Metric diophantine approximation on manifolds V.I. Bernik, M.M. Dodson
title_short Metric diophantine approximation on manifolds
title_sort metric diophantine approximation on manifolds
url https://doi.org/10.1017/CBO9780511565991
work_keys_str_mv AT bernikvi metricdiophantineapproximationonmanifolds
AT dodsonmm metricdiophantineapproximationonmanifolds