Supermanifolds

This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: DeWitt, Bryce S. 1923-2004
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1991
Ausgabe:Second edition.
Schriftenreihe:Cambridge monographs on mathematical physics
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9780511564000
003 UkCbUP
005 20151005020624.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 090518s1991||||enk o ||1 0|eng|d
020 |a 9780511564000 
100 1 |a DeWitt, Bryce S.  |d 1923-2004 
245 1 0 |a Supermanifolds  |c Bryce DeWitt 
250 |a Second edition. 
264 1 |a Cambridge  |b Cambridge University Press  |c 1991 
300 |a 1 Online-Ressource (xviii, 407 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Cambridge monographs on mathematical physics 
520 |a This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theory of analysis over supernumbers (Grassman variables), Berezin integration, supervector spaces and the superdeterminant. This basic material is then applied to the theory of supermanifolds, with an account of super-analogs of Lie derivatives, connections, metric, curvature, geodesics, Killing flows, conformal groups, etc. The book goes on to discuss the theory of super Lie groups, super Lie algebras, and invariant geometrical structures on coset spaces. Complete descriptions are given of all the simple super Lie groups. The book then turns to applications. Chapter 5 contains an account of the Peierals bracket for superclassical dynamical systems, super Hilbert spaces, path integration for fermionic quantum systems, and simple models of Bose-Fermi supersymmetry. The sixth and final chapter, which is new in this revised edition, examines dynamical systems for which the topology of the configuration supermanifold is important. A concise but complete account is given of the pathintegral derivation of the Chern-Gauss-Bonnet formula for the Euler-Poincaré characteristic of an ordinary manifold, which is based on a simple extension of a point particle moving freely in this manifold to a supersymmetric dynamical system moving in an associated supermanifold. Many exercises are included to complement the text. 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521413206 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521423779 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9780511564000  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9780511564000
_version_ 1818779683217473536
adam_text
any_adam_object
author DeWitt, Bryce S. 1923-2004
author_facet DeWitt, Bryce S. 1923-2004
author_role
author_sort DeWitt, Bryce S. 1923-2004
author_variant b s d bs bsd
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9780511564000
edition Second edition.
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02451nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511564000</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020624.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090518s1991||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511564000</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">DeWitt, Bryce S.</subfield><subfield code="d">1923-2004</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Supermanifolds</subfield><subfield code="c">Bryce DeWitt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 407 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theory of analysis over supernumbers (Grassman variables), Berezin integration, supervector spaces and the superdeterminant. This basic material is then applied to the theory of supermanifolds, with an account of super-analogs of Lie derivatives, connections, metric, curvature, geodesics, Killing flows, conformal groups, etc. The book goes on to discuss the theory of super Lie groups, super Lie algebras, and invariant geometrical structures on coset spaces. Complete descriptions are given of all the simple super Lie groups. The book then turns to applications. Chapter 5 contains an account of the Peierals bracket for superclassical dynamical systems, super Hilbert spaces, path integration for fermionic quantum systems, and simple models of Bose-Fermi supersymmetry. The sixth and final chapter, which is new in this revised edition, examines dynamical systems for which the topology of the configuration supermanifold is important. A concise but complete account is given of the pathintegral derivation of the Chern-Gauss-Bonnet formula for the Euler-Poincaré characteristic of an ordinary manifold, which is based on a simple extension of a point particle moving freely in this manifold to a supersymmetric dynamical system moving in an associated supermanifold. Many exercises are included to complement the text.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521413206</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521423779</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511564000</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9780511564000
illustrated Not Illustrated
indexdate 2024-12-18T12:04:31Z
institution BVB
isbn 9780511564000
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xviii, 407 Seiten)
psigel ZDB-20-CTM
publishDate 1991
publishDateSearch 1991
publishDateSort 1991
publisher Cambridge University Press
record_format marc
series2 Cambridge monographs on mathematical physics
spelling DeWitt, Bryce S. 1923-2004
Supermanifolds Bryce DeWitt
Second edition.
Cambridge Cambridge University Press 1991
1 Online-Ressource (xviii, 407 Seiten)
txt
c
cr
Cambridge monographs on mathematical physics
This is an updated and expanded second edition of a successful and well-reviewed text presenting a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the super-analogs of all the basic structures of ordinary manifold theory. The exposition opens with the theory of analysis over supernumbers (Grassman variables), Berezin integration, supervector spaces and the superdeterminant. This basic material is then applied to the theory of supermanifolds, with an account of super-analogs of Lie derivatives, connections, metric, curvature, geodesics, Killing flows, conformal groups, etc. The book goes on to discuss the theory of super Lie groups, super Lie algebras, and invariant geometrical structures on coset spaces. Complete descriptions are given of all the simple super Lie groups. The book then turns to applications. Chapter 5 contains an account of the Peierals bracket for superclassical dynamical systems, super Hilbert spaces, path integration for fermionic quantum systems, and simple models of Bose-Fermi supersymmetry. The sixth and final chapter, which is new in this revised edition, examines dynamical systems for which the topology of the configuration supermanifold is important. A concise but complete account is given of the pathintegral derivation of the Chern-Gauss-Bonnet formula for the Euler-Poincaré characteristic of an ordinary manifold, which is based on a simple extension of a point particle moving freely in this manifold to a supersymmetric dynamical system moving in an associated supermanifold. Many exercises are included to complement the text.
Erscheint auch als Druck-Ausgabe 9780521413206
Erscheint auch als Druck-Ausgabe 9780521423779
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511564000 Volltext
spellingShingle DeWitt, Bryce S. 1923-2004
Supermanifolds
title Supermanifolds
title_auth Supermanifolds
title_exact_search Supermanifolds
title_full Supermanifolds Bryce DeWitt
title_fullStr Supermanifolds Bryce DeWitt
title_full_unstemmed Supermanifolds Bryce DeWitt
title_short Supermanifolds
title_sort supermanifolds
url https://doi.org/10.1017/CBO9780511564000
work_keys_str_mv AT dewittbryces supermanifolds