Geometry and integrability

Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Mason, L. J., Nutku, Yavuz
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2003
Schriftenreihe:London Mathematical Society lecture note series 295
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9780511543135
003 UkCbUP
005 20151005020623.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 090505s2003||||enk o ||1 0|eng|d
020 |a 9780511543135 
245 0 0 |a Geometry and integrability  |c edited by Lionel Mason and Yavuz Nutku 
246 3 |a Geometry & Integrability 
264 1 |a Cambridge  |b Cambridge University Press  |c 2003 
300 |a 1 Online-Ressource (xi, 153 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a London Mathematical Society lecture note series  |v 295 
520 |a Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the point of diminishing returns. Two major techniques have emerged for dealing with multi-dimensional integrable systems: twistor theory and the d-bar method, both of which form the subject of this book. It is intended to be an introduction, though by no means an elementary one, to current research on integrable systems in the framework of differential geometry and algebraic geometry. This book arose from a seminar, held at the Feza Gursey Institute, to introduce advanced graduate students to this area of research. The articles are all written by leading researchers and are designed to introduce the reader to contemporary research topics.  
700 1 |a Mason, L. J. 
700 1 |a Nutku, Yavuz 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521529990 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9780511543135  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9780511543135
_version_ 1818779682945892353
adam_text
any_adam_object
author2 Mason, L. J.
Nutku, Yavuz
author2_role

author2_variant l j m lj ljm
y n yn
author_facet Mason, L. J.
Nutku, Yavuz
author_sort Mason, L. J.
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9780511543135
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01769nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511543135</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090505s2003||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543135</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Geometry and integrability</subfield><subfield code="c">edited by Lionel Mason and Yavuz Nutku</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Geometry &amp; Integrability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 153 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">295</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the point of diminishing returns. Two major techniques have emerged for dealing with multi-dimensional integrable systems: twistor theory and the d-bar method, both of which form the subject of this book. It is intended to be an introduction, though by no means an elementary one, to current research on integrable systems in the framework of differential geometry and algebraic geometry. This book arose from a seminar, held at the Feza Gursey Institute, to introduce advanced graduate students to this area of research. The articles are all written by leading researchers and are designed to introduce the reader to contemporary research topics. </subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mason, L. J.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nutku, Yavuz</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521529990</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511543135</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9780511543135
illustrated Not Illustrated
indexdate 2024-12-18T12:04:30Z
institution BVB
isbn 9780511543135
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xi, 153 Seiten)
psigel ZDB-20-CTM
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher Cambridge University Press
record_format marc
series2 London Mathematical Society lecture note series
spelling Geometry and integrability edited by Lionel Mason and Yavuz Nutku
Geometry & Integrability
Cambridge Cambridge University Press 2003
1 Online-Ressource (xi, 153 Seiten)
txt
c
cr
London Mathematical Society lecture note series 295
Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the point of diminishing returns. Two major techniques have emerged for dealing with multi-dimensional integrable systems: twistor theory and the d-bar method, both of which form the subject of this book. It is intended to be an introduction, though by no means an elementary one, to current research on integrable systems in the framework of differential geometry and algebraic geometry. This book arose from a seminar, held at the Feza Gursey Institute, to introduce advanced graduate students to this area of research. The articles are all written by leading researchers and are designed to introduce the reader to contemporary research topics.
Mason, L. J.
Nutku, Yavuz
Erscheint auch als Druck-Ausgabe 9780521529990
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511543135 Volltext
spellingShingle Geometry and integrability
title Geometry and integrability
title_alt Geometry & Integrability
title_auth Geometry and integrability
title_exact_search Geometry and integrability
title_full Geometry and integrability edited by Lionel Mason and Yavuz Nutku
title_fullStr Geometry and integrability edited by Lionel Mason and Yavuz Nutku
title_full_unstemmed Geometry and integrability edited by Lionel Mason and Yavuz Nutku
title_short Geometry and integrability
title_sort geometry and integrability
url https://doi.org/10.1017/CBO9780511543135
work_keys_str_mv AT masonlj geometryandintegrability
AT nutkuyavuz geometryandintegrability
AT masonlj geometryintegrability
AT nutkuyavuz geometryintegrability