Geometry and integrability
Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the poin...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schriftenreihe: | London Mathematical Society lecture note series
295 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511543135 | ||
003 | UkCbUP | ||
005 | 20151005020623.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 090505s2003||||enk o ||1 0|eng|d | ||
020 | |a 9780511543135 | ||
245 | 0 | 0 | |a Geometry and integrability |c edited by Lionel Mason and Yavuz Nutku |
246 | 3 | |a Geometry & Integrability | |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 Online-Ressource (xi, 153 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a London Mathematical Society lecture note series |v 295 | |
520 | |a Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the point of diminishing returns. Two major techniques have emerged for dealing with multi-dimensional integrable systems: twistor theory and the d-bar method, both of which form the subject of this book. It is intended to be an introduction, though by no means an elementary one, to current research on integrable systems in the framework of differential geometry and algebraic geometry. This book arose from a seminar, held at the Feza Gursey Institute, to introduce advanced graduate students to this area of research. The articles are all written by leading researchers and are designed to introduce the reader to contemporary research topics. | ||
700 | 1 | |a Mason, L. J. | |
700 | 1 | |a Nutku, Yavuz | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521529990 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511543135 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511543135 |
---|---|
_version_ | 1818779682945892353 |
adam_text | |
any_adam_object | |
author2 | Mason, L. J. Nutku, Yavuz |
author2_role | |
author2_variant | l j m lj ljm y n yn |
author_facet | Mason, L. J. Nutku, Yavuz |
author_sort | Mason, L. J. |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9780511543135 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01769nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511543135</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090505s2003||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543135</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Geometry and integrability</subfield><subfield code="c">edited by Lionel Mason and Yavuz Nutku</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Geometry & Integrability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 153 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">295</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the point of diminishing returns. Two major techniques have emerged for dealing with multi-dimensional integrable systems: twistor theory and the d-bar method, both of which form the subject of this book. It is intended to be an introduction, though by no means an elementary one, to current research on integrable systems in the framework of differential geometry and algebraic geometry. This book arose from a seminar, held at the Feza Gursey Institute, to introduce advanced graduate students to this area of research. The articles are all written by leading researchers and are designed to introduce the reader to contemporary research topics. </subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mason, L. J.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nutku, Yavuz</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521529990</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511543135</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511543135 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:30Z |
institution | BVB |
isbn | 9780511543135 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xi, 153 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Geometry and integrability edited by Lionel Mason and Yavuz Nutku Geometry & Integrability Cambridge Cambridge University Press 2003 1 Online-Ressource (xi, 153 Seiten) txt c cr London Mathematical Society lecture note series 295 Most integrable systems owe their origin to problems in geometry and they are best understood in a geometrical context. This is especially true today when the heroic days of KdV-type integrability are over. Problems that can be solved using the inverse scattering transformation have reached the point of diminishing returns. Two major techniques have emerged for dealing with multi-dimensional integrable systems: twistor theory and the d-bar method, both of which form the subject of this book. It is intended to be an introduction, though by no means an elementary one, to current research on integrable systems in the framework of differential geometry and algebraic geometry. This book arose from a seminar, held at the Feza Gursey Institute, to introduce advanced graduate students to this area of research. The articles are all written by leading researchers and are designed to introduce the reader to contemporary research topics. Mason, L. J. Nutku, Yavuz Erscheint auch als Druck-Ausgabe 9780521529990 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511543135 Volltext |
spellingShingle | Geometry and integrability |
title | Geometry and integrability |
title_alt | Geometry & Integrability |
title_auth | Geometry and integrability |
title_exact_search | Geometry and integrability |
title_full | Geometry and integrability edited by Lionel Mason and Yavuz Nutku |
title_fullStr | Geometry and integrability edited by Lionel Mason and Yavuz Nutku |
title_full_unstemmed | Geometry and integrability edited by Lionel Mason and Yavuz Nutku |
title_short | Geometry and integrability |
title_sort | geometry and integrability |
url | https://doi.org/10.1017/CBO9780511543135 |
work_keys_str_mv | AT masonlj geometryandintegrability AT nutkuyavuz geometryandintegrability AT masonlj geometryintegrability AT nutkuyavuz geometryintegrability |