Multivalent functions

The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-containe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hayman, W. K. 1926-
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1994
Ausgabe:Second edition.
Schriftenreihe:Cambridge tracts in mathematics 110
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9780511526268
003 UkCbUP
005 20151005020621.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 090407s1994||||enk o ||1 0|eng|d
020 |a 9780511526268 
100 1 |a Hayman, W. K.  |d 1926- 
245 1 0 |a Multivalent functions  |c W.K. Hayman 
250 |a Second edition. 
264 1 |a Cambridge  |b Cambridge University Press  |c 1994 
300 |a 1 Online-Ressource (xii, 263 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Cambridge tracts in mathematics  |v 110 
520 |a The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory. 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521057677 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521460262 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9780511526268  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9780511526268
_version_ 1818779683195453440
adam_text
any_adam_object
author Hayman, W. K. 1926-
author_facet Hayman, W. K. 1926-
author_role
author_sort Hayman, W. K. 1926-
author_variant w k h wk wkh
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9780511526268
edition Second edition.
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01718nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511526268</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020621.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090407s1994||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526268</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hayman, W. K.</subfield><subfield code="d">1926-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivalent functions</subfield><subfield code="c">W.K. Hayman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 263 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">110</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521057677</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521460262</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511526268</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9780511526268
illustrated Not Illustrated
indexdate 2024-12-18T12:04:31Z
institution BVB
isbn 9780511526268
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xii, 263 Seiten)
psigel ZDB-20-CTM
publishDate 1994
publishDateSearch 1994
publishDateSort 1994
publisher Cambridge University Press
record_format marc
series2 Cambridge tracts in mathematics
spelling Hayman, W. K. 1926-
Multivalent functions W.K. Hayman
Second edition.
Cambridge Cambridge University Press 1994
1 Online-Ressource (xii, 263 Seiten)
txt
c
cr
Cambridge tracts in mathematics 110
The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory.
Erscheint auch als Druck-Ausgabe 9780521057677
Erscheint auch als Druck-Ausgabe 9780521460262
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511526268 Volltext
spellingShingle Hayman, W. K. 1926-
Multivalent functions
title Multivalent functions
title_auth Multivalent functions
title_exact_search Multivalent functions
title_full Multivalent functions W.K. Hayman
title_fullStr Multivalent functions W.K. Hayman
title_full_unstemmed Multivalent functions W.K. Hayman
title_short Multivalent functions
title_sort multivalent functions
url https://doi.org/10.1017/CBO9780511526268
work_keys_str_mv AT haymanwk multivalentfunctions