Multivalent functions
The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-containe...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Ausgabe: | Second edition. |
Schriftenreihe: | Cambridge tracts in mathematics
110 |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511526268 | ||
003 | UkCbUP | ||
005 | 20151005020621.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 090407s1994||||enk o ||1 0|eng|d | ||
020 | |a 9780511526268 | ||
100 | 1 | |a Hayman, W. K. |d 1926- | |
245 | 1 | 0 | |a Multivalent functions |c W.K. Hayman |
250 | |a Second edition. | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 Online-Ressource (xii, 263 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge tracts in mathematics |v 110 | |
520 | |a The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521057677 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521460262 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511526268 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511526268 |
---|---|
_version_ | 1818779683195453440 |
adam_text | |
any_adam_object | |
author | Hayman, W. K. 1926- |
author_facet | Hayman, W. K. 1926- |
author_role | |
author_sort | Hayman, W. K. 1926- |
author_variant | w k h wk wkh |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9780511526268 |
edition | Second edition. |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01718nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511526268</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020621.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090407s1994||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526268</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hayman, W. K.</subfield><subfield code="d">1926-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivalent functions</subfield><subfield code="c">W.K. Hayman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 263 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">110</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521057677</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521460262</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511526268</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511526268 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:31Z |
institution | BVB |
isbn | 9780511526268 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 263 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Hayman, W. K. 1926- Multivalent functions W.K. Hayman Second edition. Cambridge Cambridge University Press 1994 1 Online-Ressource (xii, 263 Seiten) txt c cr Cambridge tracts in mathematics 110 The class of multivalent functions is an important one in complex analysis. They occur for example in the proof of De Branges' theorem which, in 1985, settled the long-standing Bieberbach conjecture. The second edition of Professor Hayman's celebrated book contains a full and self-contained proof of this result, with a chapter devoted to it. Another chapter deals with coefficient differences. It has been updated in several other ways, with theorems of Baernstein and Pommerenke on univalent functions of restricted growth, and an account of the theory of mean p-valent functions. In addition, many of the original proofs have been simplified. Each chapter contains examples and exercises of varying degrees of difficulty designed both to test understanding and illustrate the material. Consequently it will be useful for graduate students, and essential for specialists in complex function theory. Erscheint auch als Druck-Ausgabe 9780521057677 Erscheint auch als Druck-Ausgabe 9780521460262 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511526268 Volltext |
spellingShingle | Hayman, W. K. 1926- Multivalent functions |
title | Multivalent functions |
title_auth | Multivalent functions |
title_exact_search | Multivalent functions |
title_full | Multivalent functions W.K. Hayman |
title_fullStr | Multivalent functions W.K. Hayman |
title_full_unstemmed | Multivalent functions W.K. Hayman |
title_short | Multivalent functions |
title_sort | multivalent functions |
url | https://doi.org/10.1017/CBO9780511526268 |
work_keys_str_mv | AT haymanwk multivalentfunctions |