Quantum geometry a statistical field theory approach
This graduate/research level text describes in a unified fashion the statistical mechanics of random walks, random surfaces and random higher dimensional manifolds with an emphasis on the geometrical aspects of the theory and applications to the quantisation of strings, gravity and topological field...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1997
|
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9780511524417 | ||
003 | UkCbUP | ||
005 | 20151005020623.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 090402s1997||||enk o ||1 0|eng|d | ||
020 | |a 9780511524417 | ||
100 | 1 | |a Ambjørn, Jan | |
245 | 1 | 0 | |a Quantum geometry |b a statistical field theory approach |c Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1997 | |
300 | |a 1 Online-Ressource (xiv, 363 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Cambridge monographs on mathematical physics | |
520 | |a This graduate/research level text describes in a unified fashion the statistical mechanics of random walks, random surfaces and random higher dimensional manifolds with an emphasis on the geometrical aspects of the theory and applications to the quantisation of strings, gravity and topological field theory. With chapters on random walks, random surfaces, two- and higher dimensional quantum gravity, topological quantum field theories and Monte Carlo simulations of random geometries, the text provides a self-contained account of quantum geometry from a statistical field theory point of view. The approach uses discrete approximations and develops analytical and numerical tools. Continuum physics is recovered through scaling limits at phase transition points and the relation to conformal quantum field theories coupled to quantum gravity is described. The most important numerical work is covered, but the main aim is to develop mathematically precise results that have wide applications. Many diagrams and references are included. | ||
700 | 0 | |a Þórður Jónsson | |
700 | 1 | |a Durhuus, Bergfinnur J. | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521017367 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780521461672 |
856 | 4 | 0 | |l TUM01 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9780511524417 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9780511524417 |
---|---|
_version_ | 1818779683117858816 |
adam_text | |
any_adam_object | |
author | Ambjørn, Jan |
author2 | Þórður Jónsson Durhuus, Bergfinnur J. |
author2_role | |
author2_variant | þ j þj b j d bj bjd |
author_facet | Ambjørn, Jan Þórður Jónsson Durhuus, Bergfinnur J. |
author_role | |
author_sort | Ambjørn, Jan |
author_variant | j a ja |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
doi_str_mv | 10.1017/CBO9780511524417 |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01970nam a2200289 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511524417</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090402s1997||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511524417</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ambjørn, Jan</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum geometry</subfield><subfield code="b">a statistical field theory approach</subfield><subfield code="c">Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 363 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This graduate/research level text describes in a unified fashion the statistical mechanics of random walks, random surfaces and random higher dimensional manifolds with an emphasis on the geometrical aspects of the theory and applications to the quantisation of strings, gravity and topological field theory. With chapters on random walks, random surfaces, two- and higher dimensional quantum gravity, topological quantum field theories and Monte Carlo simulations of random geometries, the text provides a self-contained account of quantum geometry from a statistical field theory point of view. The approach uses discrete approximations and develops analytical and numerical tools. Continuum physics is recovered through scaling limits at phase transition points and the relation to conformal quantum field theories coupled to quantum gravity is described. The most important numerical work is covered, but the main aim is to develop mathematically precise results that have wide applications. Many diagrams and references are included.</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Þórður Jónsson</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Durhuus, Bergfinnur J.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521017367</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521461672</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511524417</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9780511524417 |
illustrated | Not Illustrated |
indexdate | 2024-12-18T12:04:30Z |
institution | BVB |
isbn | 9780511524417 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiv, 363 Seiten) |
psigel | ZDB-20-CTM |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Ambjørn, Jan Quantum geometry a statistical field theory approach Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson Cambridge Cambridge University Press 1997 1 Online-Ressource (xiv, 363 Seiten) txt c cr Cambridge monographs on mathematical physics This graduate/research level text describes in a unified fashion the statistical mechanics of random walks, random surfaces and random higher dimensional manifolds with an emphasis on the geometrical aspects of the theory and applications to the quantisation of strings, gravity and topological field theory. With chapters on random walks, random surfaces, two- and higher dimensional quantum gravity, topological quantum field theories and Monte Carlo simulations of random geometries, the text provides a self-contained account of quantum geometry from a statistical field theory point of view. The approach uses discrete approximations and develops analytical and numerical tools. Continuum physics is recovered through scaling limits at phase transition points and the relation to conformal quantum field theories coupled to quantum gravity is described. The most important numerical work is covered, but the main aim is to develop mathematically precise results that have wide applications. Many diagrams and references are included. Þórður Jónsson Durhuus, Bergfinnur J. Erscheint auch als Druck-Ausgabe 9780521017367 Erscheint auch als Druck-Ausgabe 9780521461672 TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511524417 Volltext |
spellingShingle | Ambjørn, Jan Quantum geometry a statistical field theory approach |
title | Quantum geometry a statistical field theory approach |
title_auth | Quantum geometry a statistical field theory approach |
title_exact_search | Quantum geometry a statistical field theory approach |
title_full | Quantum geometry a statistical field theory approach Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson |
title_fullStr | Quantum geometry a statistical field theory approach Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson |
title_full_unstemmed | Quantum geometry a statistical field theory approach Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson |
title_short | Quantum geometry |
title_sort | quantum geometry a statistical field theory approach |
title_sub | a statistical field theory approach |
url | https://doi.org/10.1017/CBO9780511524417 |
work_keys_str_mv | AT ambjørnjan quantumgeometryastatisticalfieldtheoryapproach AT þorðurjonsson quantumgeometryastatisticalfieldtheoryapproach AT durhuusbergfinnurj quantumgeometryastatisticalfieldtheoryapproach |