Quantum geometry a statistical field theory approach

This graduate/research level text describes in a unified fashion the statistical mechanics of random walks, random surfaces and random higher dimensional manifolds with an emphasis on the geometrical aspects of the theory and applications to the quantisation of strings, gravity and topological field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ambjørn, Jan
Weitere Verfasser: Þórður Jónsson, Durhuus, Bergfinnur J.
Format: E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1997
Schriftenreihe:Cambridge monographs on mathematical physics
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 i 4500
001 ZDB-20-CTM-CR9780511524417
003 UkCbUP
005 20151005020623.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 090402s1997||||enk o ||1 0|eng|d
020 |a 9780511524417 
100 1 |a Ambjørn, Jan 
245 1 0 |a Quantum geometry  |b a statistical field theory approach  |c Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson 
264 1 |a Cambridge  |b Cambridge University Press  |c 1997 
300 |a 1 Online-Ressource (xiv, 363 Seiten) 
336 |b txt 
337 |b c 
338 |b cr 
490 1 |a Cambridge monographs on mathematical physics 
520 |a This graduate/research level text describes in a unified fashion the statistical mechanics of random walks, random surfaces and random higher dimensional manifolds with an emphasis on the geometrical aspects of the theory and applications to the quantisation of strings, gravity and topological field theory. With chapters on random walks, random surfaces, two- and higher dimensional quantum gravity, topological quantum field theories and Monte Carlo simulations of random geometries, the text provides a self-contained account of quantum geometry from a statistical field theory point of view. The approach uses discrete approximations and develops analytical and numerical tools. Continuum physics is recovered through scaling limits at phase transition points and the relation to conformal quantum field theories coupled to quantum gravity is described. The most important numerical work is covered, but the main aim is to develop mathematically precise results that have wide applications. Many diagrams and references are included. 
700 0 |a Þórður Jónsson 
700 1 |a Durhuus, Bergfinnur J. 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521017367 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9780521461672 
856 4 0 |l TUM01  |p ZDB-20-CTM  |q TUM_PDA_CTM  |u https://doi.org/10.1017/CBO9780511524417  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CTM 
049 |a DE-91 

Datensatz im Suchindex

DE-BY-TUM_katkey ZDB-20-CTM-CR9780511524417
_version_ 1818779683117858816
adam_text
any_adam_object
author Ambjørn, Jan
author2 Þórður Jónsson
Durhuus, Bergfinnur J.
author2_role

author2_variant þ j þj
b j d bj bjd
author_facet Ambjørn, Jan
Þórður Jónsson
Durhuus, Bergfinnur J.
author_role
author_sort Ambjørn, Jan
author_variant j a ja
building Verbundindex
bvnumber localTUM
collection ZDB-20-CTM
doi_str_mv 10.1017/CBO9780511524417
format eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01970nam a2200289 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9780511524417</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">090402s1997||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511524417</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ambjørn, Jan</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum geometry</subfield><subfield code="b">a statistical field theory approach</subfield><subfield code="c">Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 363 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This graduate/research level text describes in a unified fashion the statistical mechanics of random walks, random surfaces and random higher dimensional manifolds with an emphasis on the geometrical aspects of the theory and applications to the quantisation of strings, gravity and topological field theory. With chapters on random walks, random surfaces, two- and higher dimensional quantum gravity, topological quantum field theories and Monte Carlo simulations of random geometries, the text provides a self-contained account of quantum geometry from a statistical field theory point of view. The approach uses discrete approximations and develops analytical and numerical tools. Continuum physics is recovered through scaling limits at phase transition points and the relation to conformal quantum field theories coupled to quantum gravity is described. The most important numerical work is covered, but the main aim is to develop mathematically precise results that have wide applications. Many diagrams and references are included.</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Þórður Jónsson</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Durhuus, Bergfinnur J.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521017367</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780521461672</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9780511524417</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection>
id ZDB-20-CTM-CR9780511524417
illustrated Not Illustrated
indexdate 2024-12-18T12:04:30Z
institution BVB
isbn 9780511524417
language English
open_access_boolean
owner DE-91
DE-BY-TUM
owner_facet DE-91
DE-BY-TUM
physical 1 Online-Ressource (xiv, 363 Seiten)
psigel ZDB-20-CTM
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Cambridge University Press
record_format marc
series2 Cambridge monographs on mathematical physics
spelling Ambjørn, Jan
Quantum geometry a statistical field theory approach Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson
Cambridge Cambridge University Press 1997
1 Online-Ressource (xiv, 363 Seiten)
txt
c
cr
Cambridge monographs on mathematical physics
This graduate/research level text describes in a unified fashion the statistical mechanics of random walks, random surfaces and random higher dimensional manifolds with an emphasis on the geometrical aspects of the theory and applications to the quantisation of strings, gravity and topological field theory. With chapters on random walks, random surfaces, two- and higher dimensional quantum gravity, topological quantum field theories and Monte Carlo simulations of random geometries, the text provides a self-contained account of quantum geometry from a statistical field theory point of view. The approach uses discrete approximations and develops analytical and numerical tools. Continuum physics is recovered through scaling limits at phase transition points and the relation to conformal quantum field theories coupled to quantum gravity is described. The most important numerical work is covered, but the main aim is to develop mathematically precise results that have wide applications. Many diagrams and references are included.
Þórður Jónsson
Durhuus, Bergfinnur J.
Erscheint auch als Druck-Ausgabe 9780521017367
Erscheint auch als Druck-Ausgabe 9780521461672
TUM01 ZDB-20-CTM TUM_PDA_CTM https://doi.org/10.1017/CBO9780511524417 Volltext
spellingShingle Ambjørn, Jan
Quantum geometry a statistical field theory approach
title Quantum geometry a statistical field theory approach
title_auth Quantum geometry a statistical field theory approach
title_exact_search Quantum geometry a statistical field theory approach
title_full Quantum geometry a statistical field theory approach Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson
title_fullStr Quantum geometry a statistical field theory approach Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson
title_full_unstemmed Quantum geometry a statistical field theory approach Jan Ambjørn, Bergfinnur Durhuus, Thordur Jonsson
title_short Quantum geometry
title_sort quantum geometry a statistical field theory approach
title_sub a statistical field theory approach
url https://doi.org/10.1017/CBO9780511524417
work_keys_str_mv AT ambjørnjan quantumgeometryastatisticalfieldtheoryapproach
AT þorðurjonsson quantumgeometryastatisticalfieldtheoryapproach
AT durhuusbergfinnurj quantumgeometryastatisticalfieldtheoryapproach