Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG

With amazing feedback from industry leaders, this book is an end-to-end resource for anyone looking to enhance their skills or dive into the world of AI and develop their understanding of Generative AI and Large Language Models (LLMs). It explores various methods to adapt "foundational" LL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bouchard, Louis-François (VerfasserIn), Peters, Louie (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: [Place of publication not identified] Towards AI 2024
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000001c 4500
001 BV050099449
003 DE-604
007 t|
008 241217s2024 xx |||| 00||| eng d
020 |a 9798324731472  |9 979-8-3247-3147-2 
035 |a (DE-599)BVBBV050099449 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-573 
082 0 |a 006.3/5  |2 23 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
100 1 |a Bouchard, Louis-François  |e Verfasser  |4 aut 
245 1 0 |a Building LLMs for production  |b enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG  |c Louis-François Bouchard, Louie Peters 
264 1 |a [Place of publication not identified]  |b Towards AI  |c 2024 
300 |a xi, 453 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
520 3 |a With amazing feedback from industry leaders, this book is an end-to-end resource for anyone looking to enhance their skills or dive into the world of AI and develop their understanding of Generative AI and Large Language Models (LLMs). It explores various methods to adapt "foundational" LLMs to specific use cases with enhanced accuracy, reliability, and scalability. Written by over 10 people on our Team at Towards AI and curated by experts from Activeloop, LlamaIndex, Mila, and more, it is a roadmap to the tech stack of the future. The book aims to guide developers through creating LLM products ready for production, leveraging the potential of AI across various industries. It is tailored for readers with an intermediate knowledge of Python. 
650 0 7 |a Großes Sprachmodell  |0 (DE-588)1322631905  |2 gnd  |9 rswk-swf 
653 0 |a Natural language processing (Computer science) 
653 0 |a Artificial intelligence 
653 0 |a Traitement automatique des langues naturelles 
653 0 |a Intelligence artificielle 
653 0 |a artificial intelligence 
689 0 0 |a Großes Sprachmodell  |0 (DE-588)1322631905  |D s 
689 0 |5 DE-604 
700 1 |a Peters, Louie  |e Verfasser  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 979-8-3247-3147-2 
943 1 |a oai:aleph.bib-bvb.de:BVB01-035436624 

Datensatz im Suchindex

_version_ 1820215197333192704
adam_text
any_adam_object
author Bouchard, Louis-François
Peters, Louie
author_facet Bouchard, Louis-François
Peters, Louie
author_role aut
aut
author_sort Bouchard, Louis-François
author_variant l f b lfb
l p lp
building Verbundindex
bvnumber BV050099449
classification_rvk ST 300
ctrlnum (DE-599)BVBBV050099449
dewey-full 006.3/5
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/5
dewey-search 006.3/5
dewey-sort 16.3 15
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV050099449</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">241217s2024 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9798324731472</subfield><subfield code="9">979-8-3247-3147-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050099449</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bouchard, Louis-François</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Building LLMs for production</subfield><subfield code="b">enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG</subfield><subfield code="c">Louis-François Bouchard, Louie Peters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">Towards AI</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 453 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">With amazing feedback from industry leaders, this book is an end-to-end resource for anyone looking to enhance their skills or dive into the world of AI and develop their understanding of Generative AI and Large Language Models (LLMs). It explores various methods to adapt "foundational" LLMs to specific use cases with enhanced accuracy, reliability, and scalability. Written by over 10 people on our Team at Towards AI and curated by experts from Activeloop, LlamaIndex, Mila, and more, it is a roadmap to the tech stack of the future. The book aims to guide developers through creating LLM products ready for production, leveraging the potential of AI across various industries. It is tailored for readers with an intermediate knowledge of Python.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Großes Sprachmodell</subfield><subfield code="0">(DE-588)1322631905</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Traitement automatique des langues naturelles</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Großes Sprachmodell</subfield><subfield code="0">(DE-588)1322631905</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peters, Louie</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">979-8-3247-3147-2</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035436624</subfield></datafield></record></collection>
id DE-604.BV050099449
illustrated Not Illustrated
indexdate 2025-01-03T08:21:11Z
institution BVB
isbn 9798324731472
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-035436624
open_access_boolean
owner DE-573
owner_facet DE-573
physical xi, 453 Seiten
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher Towards AI
record_format marc
spelling Bouchard, Louis-François Verfasser aut
Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG Louis-François Bouchard, Louie Peters
[Place of publication not identified] Towards AI 2024
xi, 453 Seiten
txt rdacontent
n rdamedia
nc rdacarrier
With amazing feedback from industry leaders, this book is an end-to-end resource for anyone looking to enhance their skills or dive into the world of AI and develop their understanding of Generative AI and Large Language Models (LLMs). It explores various methods to adapt "foundational" LLMs to specific use cases with enhanced accuracy, reliability, and scalability. Written by over 10 people on our Team at Towards AI and curated by experts from Activeloop, LlamaIndex, Mila, and more, it is a roadmap to the tech stack of the future. The book aims to guide developers through creating LLM products ready for production, leveraging the potential of AI across various industries. It is tailored for readers with an intermediate knowledge of Python.
Großes Sprachmodell (DE-588)1322631905 gnd rswk-swf
Natural language processing (Computer science)
Artificial intelligence
Traitement automatique des langues naturelles
Intelligence artificielle
artificial intelligence
Großes Sprachmodell (DE-588)1322631905 s
DE-604
Peters, Louie Verfasser aut
Erscheint auch als Online-Ausgabe 979-8-3247-3147-2
spellingShingle Bouchard, Louis-François
Peters, Louie
Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG
Großes Sprachmodell (DE-588)1322631905 gnd
subject_GND (DE-588)1322631905
title Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG
title_auth Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG
title_exact_search Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG
title_full Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG Louis-François Bouchard, Louie Peters
title_fullStr Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG Louis-François Bouchard, Louie Peters
title_full_unstemmed Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG Louis-François Bouchard, Louie Peters
title_short Building LLMs for production
title_sort building llms for production enhancing llm abilities and reliability with prompting fine tuning and rag
title_sub enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG
topic Großes Sprachmodell (DE-588)1322631905 gnd
topic_facet Großes Sprachmodell
work_keys_str_mv AT bouchardlouisfrancois buildingllmsforproductionenhancingllmabilitiesandreliabilitywithpromptingfinetuningandrag
AT peterslouie buildingllmsforproductionenhancingllmabilitiesandreliabilitywithpromptingfinetuningandrag