Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG
With amazing feedback from industry leaders, this book is an end-to-end resource for anyone looking to enhance their skills or dive into the world of AI and develop their understanding of Generative AI and Large Language Models (LLMs). It explores various methods to adapt "foundational" LL...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[Place of publication not identified]
Towards AI
2024
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV050099449 | ||
003 | DE-604 | ||
007 | t| | ||
008 | 241217s2024 xx |||| 00||| eng d | ||
020 | |a 9798324731472 |9 979-8-3247-3147-2 | ||
035 | |a (DE-599)BVBBV050099449 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
082 | 0 | |a 006.3/5 |2 23 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Bouchard, Louis-François |e Verfasser |4 aut | |
245 | 1 | 0 | |a Building LLMs for production |b enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG |c Louis-François Bouchard, Louie Peters |
264 | 1 | |a [Place of publication not identified] |b Towards AI |c 2024 | |
300 | |a xi, 453 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a With amazing feedback from industry leaders, this book is an end-to-end resource for anyone looking to enhance their skills or dive into the world of AI and develop their understanding of Generative AI and Large Language Models (LLMs). It explores various methods to adapt "foundational" LLMs to specific use cases with enhanced accuracy, reliability, and scalability. Written by over 10 people on our Team at Towards AI and curated by experts from Activeloop, LlamaIndex, Mila, and more, it is a roadmap to the tech stack of the future. The book aims to guide developers through creating LLM products ready for production, leveraging the potential of AI across various industries. It is tailored for readers with an intermediate knowledge of Python. | |
650 | 0 | 7 | |a Großes Sprachmodell |0 (DE-588)1322631905 |2 gnd |9 rswk-swf |
653 | 0 | |a Natural language processing (Computer science) | |
653 | 0 | |a Artificial intelligence | |
653 | 0 | |a Traitement automatique des langues naturelles | |
653 | 0 | |a Intelligence artificielle | |
653 | 0 | |a artificial intelligence | |
689 | 0 | 0 | |a Großes Sprachmodell |0 (DE-588)1322631905 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Peters, Louie |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 979-8-3247-3147-2 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035436624 |
Datensatz im Suchindex
_version_ | 1820215197333192704 |
---|---|
adam_text | |
any_adam_object | |
author | Bouchard, Louis-François Peters, Louie |
author_facet | Bouchard, Louis-François Peters, Louie |
author_role | aut aut |
author_sort | Bouchard, Louis-François |
author_variant | l f b lfb l p lp |
building | Verbundindex |
bvnumber | BV050099449 |
classification_rvk | ST 300 |
ctrlnum | (DE-599)BVBBV050099449 |
dewey-full | 006.3/5 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/5 |
dewey-search | 006.3/5 |
dewey-sort | 16.3 15 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV050099449</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">241217s2024 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9798324731472</subfield><subfield code="9">979-8-3247-3147-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV050099449</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bouchard, Louis-François</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Building LLMs for production</subfield><subfield code="b">enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG</subfield><subfield code="c">Louis-François Bouchard, Louie Peters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">Towards AI</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 453 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">With amazing feedback from industry leaders, this book is an end-to-end resource for anyone looking to enhance their skills or dive into the world of AI and develop their understanding of Generative AI and Large Language Models (LLMs). It explores various methods to adapt "foundational" LLMs to specific use cases with enhanced accuracy, reliability, and scalability. Written by over 10 people on our Team at Towards AI and curated by experts from Activeloop, LlamaIndex, Mila, and more, it is a roadmap to the tech stack of the future. The book aims to guide developers through creating LLM products ready for production, leveraging the potential of AI across various industries. It is tailored for readers with an intermediate knowledge of Python.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Großes Sprachmodell</subfield><subfield code="0">(DE-588)1322631905</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Traitement automatique des langues naturelles</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Großes Sprachmodell</subfield><subfield code="0">(DE-588)1322631905</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peters, Louie</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">979-8-3247-3147-2</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035436624</subfield></datafield></record></collection> |
id | DE-604.BV050099449 |
illustrated | Not Illustrated |
indexdate | 2025-01-03T08:21:11Z |
institution | BVB |
isbn | 9798324731472 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035436624 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | xi, 453 Seiten |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Towards AI |
record_format | marc |
spelling | Bouchard, Louis-François Verfasser aut Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG Louis-François Bouchard, Louie Peters [Place of publication not identified] Towards AI 2024 xi, 453 Seiten txt rdacontent n rdamedia nc rdacarrier With amazing feedback from industry leaders, this book is an end-to-end resource for anyone looking to enhance their skills or dive into the world of AI and develop their understanding of Generative AI and Large Language Models (LLMs). It explores various methods to adapt "foundational" LLMs to specific use cases with enhanced accuracy, reliability, and scalability. Written by over 10 people on our Team at Towards AI and curated by experts from Activeloop, LlamaIndex, Mila, and more, it is a roadmap to the tech stack of the future. The book aims to guide developers through creating LLM products ready for production, leveraging the potential of AI across various industries. It is tailored for readers with an intermediate knowledge of Python. Großes Sprachmodell (DE-588)1322631905 gnd rswk-swf Natural language processing (Computer science) Artificial intelligence Traitement automatique des langues naturelles Intelligence artificielle artificial intelligence Großes Sprachmodell (DE-588)1322631905 s DE-604 Peters, Louie Verfasser aut Erscheint auch als Online-Ausgabe 979-8-3247-3147-2 |
spellingShingle | Bouchard, Louis-François Peters, Louie Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG Großes Sprachmodell (DE-588)1322631905 gnd |
subject_GND | (DE-588)1322631905 |
title | Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG |
title_auth | Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG |
title_exact_search | Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG |
title_full | Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG Louis-François Bouchard, Louie Peters |
title_fullStr | Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG Louis-François Bouchard, Louie Peters |
title_full_unstemmed | Building LLMs for production enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG Louis-François Bouchard, Louie Peters |
title_short | Building LLMs for production |
title_sort | building llms for production enhancing llm abilities and reliability with prompting fine tuning and rag |
title_sub | enhancing LLM abilities and reliability with prompting, fine-tuning, and RAG |
topic | Großes Sprachmodell (DE-588)1322631905 gnd |
topic_facet | Großes Sprachmodell |
work_keys_str_mv | AT bouchardlouisfrancois buildingllmsforproductionenhancingllmabilitiesandreliabilitywithpromptingfinetuningandrag AT peterslouie buildingllmsforproductionenhancingllmabilitiesandreliabilitywithpromptingfinetuningandrag |