Enterprise Information Systems 24th International Conference, ICEIS 2022, Virtual Event, April 25-27, 2022, Revised Selected Papers

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Filipe, Joaquim (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cham Springer International Publishing AG 2023
Ausgabe:1st ed
Schriftenreihe:Lecture Notes in Business Information Processing Series v.487
Schlagworte:
Online-Zugang:DE-2070s
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Intro
  • Preface
  • Organization
  • Contents
  • Databases and Information Systems Integration
  • Balancing Simplicity and Complexity in Modeling Mined Business Processes: A User Perspective
  • 1 Introduction
  • 2 A Methodology for Aligning Process Model Abstraction and Users of Process Models
  • 3 Demonstration
  • 3.1 Case Study One: Logistics in Production Facility
  • 3.2 Case Study Two: Reimbursement of Travel Cost
  • 3.3 Cross-Analysis of the Case Studies
  • 4 Related Work
  • 5 Conclusions and Future Work
  • References
  • A Storage Location Assignment Problem with Incompatibility and Isolation Constraints: An Iterated Local Search Approach
  • 1 Introduction
  • 2 Literature Review
  • 3 Problem Description
  • 4 Input Data Processing
  • 4.1 Warehouse Input Format
  • 4.2 Distance Matrix Extraction
  • 5 Iterated Local Search
  • 5.1 Solution Evaluation
  • 6 Instance Sets
  • 7 Computational Evaluation
  • 8 Conclusion
  • References
  • Using IoT Technology for the Skilled Crafts
  • 1 Introduction
  • 2 Related Work
  • 2.1 Technical Implementation and Existing IoT Solutions
  • 2.2 Digital Platforms for the Skilled Crafts
  • 3 Methodology and Approach
  • 3.1 Approach
  • 3.2 Identification and Evaluation of IoT Use Cases
  • 3.3 IoT-Sensor Screening
  • 3.4 IoT4H Platform
  • 4 Preliminary Results
  • 4.1 Identification of IoT Use Cases for the Skilled Crafts
  • 4.2 IoT4H Platform
  • 4.3 IoT Living Lab
  • 5 Conclusion
  • References
  • Implementation Solutions for FAIR Clinical Research Data Management
  • 1 Introduction
  • 2 Background
  • 3 A Platform for FAIR Clinical Data
  • 4 The ETL4FAIR Framework
  • 4.1 ETL4FAIR Overview
  • 4.2 Solutions Implemented to Cover FAIRification
  • 5 Cloud FAIR Data Point
  • 5.1 FAIR DP Architecture
  • 5.2 FAIR DP Endpoints and Pods
  • 5.3 VODAN BR Cloud FAIR DP
  • 6 Conclusions and Future Works
  • References
  • Artificial Intelligence and Decision Support Systems
  • Visual Interactive Exploration and Labeling of Large Volumes of Industrial Time Series Data
  • 1 Introduction
  • 2 Problem Statement
  • 2.1 Motivating Exemplary Use Cases
  • 2.2 Labeling of a Sensor Data Set for Machine Learning Tasks
  • 3 Related Work
  • 4 Efficient Exploration and Labeling of Multivariate Industrial Sensor Data
  • 4.1 Design Goals
  • 4.2 Data Formats and Forms
  • 4.3 Visualization of Large Data Sets
  • 4.4 Support of Small Time Units
  • 4.5 Aggregation and Adaptive Aggregation of Data for Large Query Results
  • 4.6 Label Classes and Formats
  • 5 Label Support System
  • 5.1 Semi-automated Unsupervised Labeling Support
  • 5.2 Active Learning Labeling Support
  • 6 Evaluation
  • 6.1 Performance
  • 6.2 User Study
  • 6.3 Active Learning
  • 6.4 Discussion
  • 7 Conclusion and Outlook
  • References
  • Resource Planning in Workflow Nets Based on a Symbolic Time Constraint Propagation Mechanism
  • 1 Introduction
  • 2 Theoretical Foundations
  • 2.1 Workflow Net
  • 2.2 Soundness
  • 2.3 Process
  • 2.4 Time Petri Net
  • 2.5 Colored Petri Net
  • 2.6 CPN Tools
  • 2.7 Resource Allocation Mechanism
  • 2.8 Linear Logic
  • 2.9 Linear Logic for Soundness Verification
  • 3 Time Constraint Propagation Mechanism
  • 3.1 Forward Propagation
  • 3.2 Backward Propagation
  • 4 CPN Implementation of the Workflow Net with Resources
  • 4.1 CPN Model
  • 4.2 Simulation Results
  • 5 Related Works
  • 6 Conclusions
  • References
  • Implementation of the Maintenance Cost Optimization Function in Manufacturing Execution Systems
  • 1 Introduction
  • 2 Minimal Operating Cost for Single Spare Part
  • 3 Determining the Optimal Cost of a Single Spare Part
  • 3.1 Real Industrial Spare Parts
  • 3.2 Spare Part Controlled by Sensors and AI System
  • 4 Implementation of the Spare Part Cost Optimization Algorithm in MES.
  • 5 Conclusions
  • References
  • Quantitative Comparison of Translation by Transformers-Based Neural Network Models
  • 1 Introduction
  • 2 Related Works
  • 3 Analysis Methodology
  • 3.1 Dataset Preparation
  • 3.2 Language Detection
  • 3.3 Automatic Translation
  • 3.4 Translation with MS Azure Cloud
  • 4 Fine-Tuning
  • 4.1 Fine-Tuning on a Reduced Training Dataset
  • 4.2 Fine-Tuning on the Complete Training Dataset
  • 5 Conclusion and Discussion
  • References
  • OptiViTh: A Decision Guidance Framework and System for Design, Analysis and Optimization of Cloud-Manufactured Virtual Things
  • 1 Introduction
  • 2 Overview of V-Thing Framework
  • 3 Mathematical Formalization of the V-Thing Framework
  • 3.1 Virtual Products
  • 3.2 Specs of Virtual Products
  • 3.3 Virtual Services
  • 3.4 Specs of Virtual Services
  • 4 OptiViTh Decision Guidance System
  • 4.1 Architecture Overview
  • 4.2 Artifacts in the Repository
  • 4.3 V-Thing Creation
  • 4.4 V-Thing Optimization
  • 5 Conclusions
  • References
  • Efficient Deep Neural Network Training Techniques for Overfitting Avoidance
  • 1 Introduction
  • 2 Related Works
  • 3 Overfitting Machanism
  • 3.1 Popular Solution for Ovefitting
  • 4 Maths Behind Dropout
  • 5 Experimental Results and Discussions
  • 5.1 Simulation Scenario: EarlyStopping
  • 5.2 Simulation Scenario: Dropout
  • 6 Conclusion
  • References
  • Effect of Convulsion Layers and Hyper-parameters on the Behavior of Adversarial Neural Networks
  • 1 Introduction
  • 2 Related Works
  • 3 How Are Generative Models Implemented?
  • 4 Theoretical and Mathematical Basis for GAN Networks
  • 4.1 Gradient Descent
  • 4.2 Generator
  • 4.3 Discriminator
  • 4.4 Optimizing the Model
  • 4.5 Cost of the GAN
  • 4.6 Cost of the Generator
  • 4.7 Loss Function
  • 4.8 Generator Loss
  • 4.9 Discriminator Loss
  • 4.10 Combined Loss Functions
  • 4.11 Experimental Setup
  • 5 Conclusion
  • References
  • Information Systems Analysis and Specification
  • Modelling Software Tasks for Supporting Resource-Driven Adaptation
  • 1 Introduction
  • 2 Related Work
  • 3 Meta-model of SERIES
  • 3.1 Constructs that SERIES Incorporates from CTT
  • 3.2 Abstract Task
  • 3.3 Application Task
  • 3.4 Application Task Variant
  • 4 Automated Warehouse System Example
  • 4.1 Abstract Task: Prepare Order
  • 4.2 Application Tasks
  • 4.3 Application Task Variants for Pack Items in a Box
  • 4.4 Application Task Variants for Decorate Box
  • 5 Supporting Tool of SERIES
  • 6 Evaluation
  • 6.1 Participants
  • 6.2 Design of the Study
  • 6.3 Results
  • 7 Conclusion and Future Work
  • References
  • A Critical View on the OQuaRE Ontology Quality Framework
  • 1 Introduction
  • 2 Inconsistent Metric Definitions of OQuaRE
  • 2.1 Number of Children (NOCOnto)
  • 2.2 Response for a Class (RFCOnto)
  • 2.3 Relationship Richness (RROnto)
  • 2.4 Properties Richness (PROnto)
  • 2.5 Tangledness (TMOnto)
  • 2.6 Weighted Method Count (WMCOnto)
  • 2.7 Attribute Richness (AROnto)
  • 3 Harmonized OQuaRE Framework
  • 3.1 Metric Definitions
  • 3.2 OQuaRE Quality Characteristics
  • 3.3 Connecting Quality Characteristics and Metrics
  • 4 Evaluation of the OQuaRE Quality Ratings
  • 4.1 Previous Evaluations of and with OQuaRE
  • 4.2 Metric Data Origin Methodology
  • 4.3 The Distribution of OQuaRE Ratings on the Metric Dataset
  • 4.4 Implications of the Quality Evaluation
  • 5 Discussion and Conclusion
  • References
  • Successful Practices in Industry-Academy Collaboration in the Context of Software Agility: A Systematic Literature Review
  • 1 Introduction
  • 2 Theoretical Reference
  • 2.1 Industry-Academy Collaboration (IAC)
  • 2.2 Agile Software Development (ASD)
  • 3 Methodology
  • 4 Search Results and Discussions
  • 4.1 A. (RQ1) What Challenges to the Application of IACs in ASD Were Raised?
  • 4.2 B. (RQ2) What Are the Proposed Practices for Improving IAC in the Context of ASD?
  • 4.3 C. (RQ3) What Types of IAC Models Have Been Proposed in the Context of ASD?
  • 4.4 Correlations Between Challenges and Good Practices
  • 4.5 Discussions and Threats to Validity
  • 5 Conclusion
  • References
  • Human-Computer Interaction
  • Distance Digital Learning for Adult Learners: Self-paced e-Learning on Business Information Systems
  • 1 From Distance Education to Self-paced e-Learning
  • 2 Design Elements of the Self-paced e-Learning Environments
  • 3 Pilot and Case Studies
  • 3.1 Pilot
  • 3.2 Course "Modelling and Design of Business Information Systems"
  • 3.3 Hands-On-Training on SAP ERP-Systems (SAP S/4 HANA)
  • 3.4 Course "Business Information Systems"
  • 3.5 Course "Management and Control of IT"
  • 4 Research Model and Data Collection
  • 5 Conclusions
  • References
  • Human-Computer Interaction: Ethical Perspectives on Technology and Its (Mis)uses
  • 1 Introduction
  • 2 The Neuralink Experiment and the Financial Power to Support Scientific Research
  • 3 Treating Depression with a Deep Stimulation Device
  • 4 Neuralink, Mental Illness and the Use of Human-Computer Interaction to Exert Social Control
  • 5 Conclusions
  • References
  • Enterprise Architecture
  • Meet2Map: A Framework to Support BPM Projects Implementation Collaboratively
  • 1 Introduction
  • 2 Methodological Approach
  • 3 Background Knowledge
  • 3.1 Business Process Discovering and Modeling
  • 3.2 Design Principles to Foster Business Processes Discovering
  • 4 Related Work
  • 5 Proposal: The Meet2map Framework
  • 5.1 Modeling Tool
  • 5.2 Collaborative Modeling Process
  • 5.3 Artifacts
  • 6 Evaluation
  • 6.1 Case Study 1
  • 6.2 Case Study 2
  • 7 Discussion
  • 8 Conclusion
  • References
  • The Factors of Enterprise Business Architecture Readiness in Organisations
  • 1 Introduction
  • 2 Literature Review