The Adaptive Markets Hypothesis An Evolutionary Approach to Understanding Financial System Dynamics

The Adaptive Markets Hypothesis is a formal and systematic exposition. Lo and Zhang develop the mathematical foundations of the simple yet powerful evolutionary model and show that the most fundamental economic behaviours that we take for granted emerge solely through natural selection

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lo, Andrew W. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Oxford Oxford University Press, Incorporated 2024
Ausgabe:1st ed
Schriftenreihe:Clarendon Lectures in Finance Series
Schlagworte:
Online-Zugang:DE-2070s
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV049871734
003 DE-604
007 cr|uuu---uuuuu
008 240918s2024 xx o|||| 00||| eng d
020 |a 9780192885692  |9 978-0-19-288569-2 
035 |a (ZDB-30-PQE)EBC31131780 
035 |a (ZDB-30-PAD)EBC31131780 
035 |a (ZDB-89-EBL)EBL31131780 
035 |a (OCoLC)1466901015 
035 |a (DE-599)BVBBV049871734 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-2070s 
084 |a QK 640  |0 (DE-625)141673:  |2 rvk 
084 |a QK 600  |0 (DE-625)141666:  |2 rvk 
100 1 |a Lo, Andrew W.  |e Verfasser  |4 aut 
245 1 0 |a The Adaptive Markets Hypothesis  |b An Evolutionary Approach to Understanding Financial System Dynamics 
250 |a 1st ed 
264 1 |a Oxford  |b Oxford University Press, Incorporated  |c 2024 
264 4 |c ©2024 
300 |a 1 Online-Ressource (801 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Clarendon Lectures in Finance Series 
500 |a Description based on publisher supplied metadata and other sources 
505 8 |a Cover -- Title page -- Copyright page -- Acknowledgements -- Contents -- List of Figures -- List of Tables -- 1 Introduction and Roadmap -- 1.1 Behaviour and Rationality -- 1.2 'Anomalies' -- 1.3 Environment and Evolution -- 1.4 The Traditional Investment Paradigm -- 1.5 A New World Order -- 1.6 The Adaptive Markets Hypothesis -- 1.7 Practical Implications -- 1.8 Organizational Structure of the Book -- Part I. FOUNDATIONS -- 2 The Origin of Behaviour -- 2.1 The Binary Choice Model -- 2.1.1 The Role of Φ(xa,xb) -- 2.1.2 Individual Behaviour -- 2.1.3 Population Dynamics -- 2.1.4 Asymptotic Properties -- 2.2 Probability Matching -- 2.2.1 Exact Probability Matching -- 2.2.2 The General Case -- 2.2.3 Individually Optimal vs Growth-Optimal Behaviour -- 2.3 Risk Preferences -- 2.3.1 Growth-Optimal Risk Preferences -- 2.3.2 Risk Aversion -- 2.3.3 Loss Aversion -- 2.4 Idiosyncratic versus Systematic Risk -- 2.4.1 Idiosyncratic Risk -- 2.4.2 The General Case -- 2.5 Discussion -- 3 Mutation -- 3.1 Environments with Mutation -- 3.1.1 Asymptotic Population Dynamics -- 3.1.2 Extinction Probability -- 3.2 The Optimal Degree of Irrationality -- 3.2.1 An Example with Two Behaviours -- 3.3 Generalization and Simulation -- 3.3.1 Symmetric Regimes -- 3.3.2 Asymmetric Regimes -- 3.3.3 When Mutation Is Undesirable -- 3.3.4 Optimal Degree of Irrationality -- 3.4 Discussion -- 4 Group Selection -- 4.1 Environments with Factor Structure -- 4.2 Individual versus Group Optimality -- 4.3 Multinomial Choice with Multiple Factors -- 4.4 A Numerical Example -- 4.5 Discussion -- Part II. BEHAVIOUR -- 5 Probability Matching -- 5.1 The Binary Choice Game -- 5.2 Summary Statistics -- 5.3 A Model of Individual Behaviour -- 5.4 Initial Learning -- 5.5 Decision Autocorrelation -- 5.6 Probability Matching -- 5.7 Individual Differences -- 5.8 Discussion -- 6 Risk Aversion 
505 8 |a 6.1 Environments with Mixed Risks -- 6.2 Individual Preferences -- 6.3 Risk Aversion and Systematic Risk -- 6.4 Common Distributions of Relative Fecundity -- 6.5 Testable Implications -- 6.5.1 Biology and Behavioural Ecology -- 6.5.2 Financial Economics -- 6.5.3 The Equity Premium and Systematic Risk -- 6.6 Discussion -- 7 Cooperation -- 7.1 Environments with Interactions -- 7.1.1 Assumptions -- 7.1.2 Results -- 7.1.3 Evolutionary Optimality -- 7.1.4 Idiosyncratic Risk -- 7.1.5 Random Matching -- 7.1.6 Density Dependence -- 7.2 Behavioural Implications -- 7.2.1 Specialization -- 7.2.2 Sacrifice -- 7.2.3 Coordination -- 7.3 Discussion -- 8 Bounded Rationality and Intelligence -- 8.1 Environments with Intelligence -- 8.2 An Evolutionary Definition of Intelligence -- 8.3 Bounded Rationality -- 8.4 A Universal Measure of Intelligence and its Cost -- 8.5 Upper Bound on Correlation -- 8.6 Intelligence across Generations -- 8.6.1 No Inter-Generational Variation -- 8.6.2 Inter-Generational Variation -- 8.7 Discussion -- 9 Learning to be Bayesian -- 9.1 Environments with States -- 9.2 Bayesian Behaviours in Stationary Environments -- 9.3 What is Intelligence? Revisited -- 9.4 Finite Memory in Nonstationary Environments -- 9.5 Sampling with Limited Information -- 9.6 Discussion -- 10 The Madness of Mobs -- 10.1 Political Polarization -- 10.1.1 A Simple Example -- 10.1.2 The General Case -- 10.2 Bias and Discrimination -- 10.2.1 A Simple Example -- 10.2.2 Feedback Loops -- 10.2.3 Locally Evolutionarily Stable Strategies -- 10.2.4 Feedback Can Lead to Greater Bias -- 10.2.5 Path-Dependent Evolution -- 10.3 Practical Implications -- 10.4 Discussion -- Part III. NEURONS -- 11 Fear, Greed, and Financial Crises -- 11.1 A Brief History of the Brain -- 11.2 Fear -- 11.3 Greed -- 11.4 Risk -- 11.5 Rationality -- 11.6 Sentience -- 11.7 Interactions Among Components 
505 8 |a 11.8 Evolution at the Speed of Thought -- 11.9 Practical Implications -- 11.10 Discussion -- 12 The Psychophysiology of Trading -- 12.1 Measuring Emotional Response -- 12.2 Experimental Design -- 12.3 Results -- 12.4 Discussion -- 13 What Makes a Good Day Trader? -- 13.1 Risk-Taking and Emotion -- 13.1.1 Emotion, Personality, and Preferences -- 13.1.2 Emotional Response Metrics -- 13.2 Experimental Design -- 13.3 Results -- 13.3.1 Personality Traits and Trading Performance -- 13.3.2 Emotional States and Trading Performance -- 13.4 Discussion -- Part IV. FINANCIAL MARKET DYNAMICS -- 14 A Computational View of Market Efficiency -- 14.1 The Model -- 14.2 A Computational Definition of Market Efficiency -- 14.3 Market Evolution -- 14.3.1 Market Spikes -- 14.3.2 High-Memory Strategies Feed off Low-Memory Strategies -- 14.4 A Financial Turing Test -- 14.5 Experimental Design -- 14.6 Synthetic Processes and Results -- 14.6.1 Random Permutation -- 14.6.2 A Variant -- 14.6.3 AR(1) -- 14.6.4 Comparison of Random Permutation and AR(1) Results -- 14.6.5 Learning -- 14.7 Discussion -- 15 Maximizing Relative versus Absolute Wealth -- 15.1 The Kelly Criterion -- 15.2 Maximizing Relative Wealth -- 15.2.1 One-Period Results -- 15.2.2 Multi-Period Results -- 15.2.3 Infinite Horizon -- 15.3 A Numerical Example -- 15.3.1 Maximizing One-Period Relative Wealth -- 15.3.2 Maximizing Multi-Period Relative Wealth -- 15.4 Testable Implications -- 15.5 Discussion -- 16 Hedge Funds: The Galápagos Islands of Finance -- 16.1 Hedge Fund Characteristics -- 16.1.1 Fees -- 16.1.2 Leverage -- 16.1.3 Share Restrictions -- 16.1.4 Fund Flows and Capital Formation -- 16.2 An Overview of Hedge Fund Return Data -- 16.2.1 Data Sources -- 16.2.2 Biases -- 16.2.3 Entries and Exits -- 16.2.4 Hedge Fund Indexes -- 16.3 Investment Performance -- 16.3.1 Basic Performance Studies 
505 8 |a 16.3.2 Performance Persistence -- 16.3.3 Timing Ability -- 16.3.4 Hedge Fund Styles -- 16.4 Illiquidity -- 16.4.1 Measures of Illiquidity and Return Smoothing -- 16.4.2 Illiquidity and Statistical Biases -- 16.4.3 Measuring Illiquidity Risk Premia -- 16.4.4 The Mean-Variance-Illiquidity Frontier -- 16.5 Hedge Fund Risks -- 16.5.1 Value at Risk and Risk Shifting -- 16.5.2 Linear Factor Models -- 16.5.3 Limitations of Hedge Fund Factor Models -- 16.5.4 Operational Risks -- 16.5.5 Risk Management -- 16.5.6 Hedge Fund Beta Replication -- 16.6 The Financial Crisis -- 16.6.1 Early Warning Signs of the Crisis -- 16.6.2 Winners and Losers -- 16.6.3 Post-Crisis Performance -- 16.6.4 Hedge Funds and Systemic Risk -- 16.7 Implementation Issues for Hedge Fund Investing -- 16.7.1 The Limits of Mean-Variance Optimization -- 16.7.2 Over Diversification -- 16.7.3 Investment Implications -- 16.7.4 An Integrated Hedge Fund Investment Process -- 16.7.5 Implications for Adaptive Markets -- 16.8 Discussion -- 17 What Happened to the Quants in August 2007? -- 17.1 The Data -- 17.1.1 Compustat Data -- 17.1.2 TAQ Transactions Data -- 17.2 Factor Portfolios -- 17.2.1 Factor Construction -- 17.2.2 Market Behaviour in 2007 -- 17.2.3 Evidence from Transactions Data -- 17.3 Measures of Market Liquidity -- 17.3.1 Market-making and Contrarian Profits -- 17.3.2 Market Liquidity: 1995-2007 -- 17.3.3 Market Liquidity in 2007 -- 17.3.4 Determining the Epicentre of the Quake -- 17.4 Discussion -- Part V. FINANCIAL INSTITUTIONS AND ADAPTATION -- 18 The Co-Evolution of Financial Markets and Technology -- 18.1 Historical Context -- 18.2 The Evolution of Technology and Finance -- 18.3 Timetable of Financial Evolution -- 18.4 The Eight Eras of Financial Evolution -- 18.4.1 1944-1951: Classical Financial Era -- 18.4.2 1952-1963: The Modern Portfolio Theory Era 
505 8 |a 18.4.3 1964-1972: The Alpha Beta Era -- 18.4.4 1973-1981: The Derivatives Era -- 18.4.5 1982-1988: The Automation Era -- 18.4.6 1989-1999: The Financial Globalization Era -- 18.4.7 2000-2009: The Algorithmic Trading Era -- 18.4.8 2010-2021: The Digital Assets Era -- 18.5 Discussion -- 19 The Role of Culture in Finance -- 19.1 What is Culture? -- 19.2 What Determines Corporate Values? -- 19.2.1 Values from the Top Down: Authority and Leadership -- 19.2.2 Values from the Bottom Up: Composition -- 19.2.3 Values from the Environment: Risk and Regulation -- 19.2.4 Values from Economists: Responding to Incentives -- 19.2.5 Values from Evolution: The Adaptive Markets Hypothesis -- 19.3 Examples from the Financial Industry -- 19.4 Regulatory Culture -- 19.5 The Importance of Feedback Loops -- 19.6 Behavioural Risk Management -- 19.7 Discussion -- 20 Regulation and Adaptive Markets -- 20.1 Measures of Systemic Risk -- 20.2 The Shadow Banking System -- 20.3 The Shadow Hedge Fund System -- 20.4 Behavioural Foundations of Systemic Risk -- 20.5 A Process for Regulatory Design and Reform -- 20.6 The Capital Markets Safety Board -- 20.7 Transparency and Fair Value Accounting -- 20.8 The Role of Technology and Education -- 20.9 The Role of Corporate Governance -- 20.10 Discussion -- Epilogue -- Appendix A: Notational Glossary -- Appendix B: Proofs and Additional Results -- B.1 Chapter 2: The Binary Choice Model -- B.1.1 Proof of Proposition 2.1 -- B.1.2 Proof of Corollary 2.1 -- B.1.3 Proof of Proposition 2.2 -- B.1.4 Proof of Proposition 2.3 -- B.1.5 Proof of Corollary 2.2 -- B.1.6 Proof of Proposition 2.4 -- B.1.7 Proof of Proposition 2.5 -- B.1.8 Proof of Corollary 2.4 -- B.1.9 Proof of Corollary 2.5 -- B.2 Chapter 3: Mutation -- B.2.1 Proof of Lemma B.1 -- B.2.2 Proof of Proposition 3.1 -- B.2.3 Proof of Proposition 3.2 -- B.2.4 Proof of Proposition 3.3 
505 8 |a B.2.5 Proof of Proposition 3.4 
520 |a The Adaptive Markets Hypothesis is a formal and systematic exposition. Lo and Zhang develop the mathematical foundations of the simple yet powerful evolutionary model and show that the most fundamental economic behaviours that we take for granted emerge solely through natural selection 
650 0 7 |a Neuroökonomik  |0 (DE-588)7613972-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Kreditmarkt  |0 (DE-588)4073788-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Anlageverhalten  |0 (DE-588)4214003-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Marktverhalten  |0 (DE-588)4135561-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Volatilität  |0 (DE-588)4268390-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Wirtschaftliches Verhalten  |0 (DE-588)4197971-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Marktpsychologie  |0 (DE-588)4140888-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Anlageverhalten  |0 (DE-588)4214003-1  |D s 
689 0 1 |a Kreditmarkt  |0 (DE-588)4073788-3  |D s 
689 0 2 |a Marktpsychologie  |0 (DE-588)4140888-3  |D s 
689 0 3 |a Marktverhalten  |0 (DE-588)4135561-1  |D s 
689 0 4 |a Neuroökonomik  |0 (DE-588)7613972-4  |D s 
689 0 5 |a Volatilität  |0 (DE-588)4268390-7  |D s 
689 0 6 |a Wirtschaftliches Verhalten  |0 (DE-588)4197971-0  |D s 
689 0 |5 DE-604 
700 1 |a Zhang, Ruixun  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Lo, Andrew W.  |t The Adaptive Markets Hypothesis  |d Oxford : Oxford University Press, Incorporated,c2024  |z 9780199681143 
912 |a ZDB-30-PQE 
943 1 |a oai:aleph.bib-bvb.de:BVB01-035211209 
966 e |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31131780  |l DE-2070s  |p ZDB-30-PQE  |q HWR_PDA_PQE  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1822410852834213888
adam_text
any_adam_object
author Lo, Andrew W.
author_facet Lo, Andrew W.
author_role aut
author_sort Lo, Andrew W.
author_variant a w l aw awl
building Verbundindex
bvnumber BV049871734
classification_rvk QK 640
QK 600
collection ZDB-30-PQE
contents Cover -- Title page -- Copyright page -- Acknowledgements -- Contents -- List of Figures -- List of Tables -- 1 Introduction and Roadmap -- 1.1 Behaviour and Rationality -- 1.2 'Anomalies' -- 1.3 Environment and Evolution -- 1.4 The Traditional Investment Paradigm -- 1.5 A New World Order -- 1.6 The Adaptive Markets Hypothesis -- 1.7 Practical Implications -- 1.8 Organizational Structure of the Book -- Part I. FOUNDATIONS -- 2 The Origin of Behaviour -- 2.1 The Binary Choice Model -- 2.1.1 The Role of Φ(xa,xb) -- 2.1.2 Individual Behaviour -- 2.1.3 Population Dynamics -- 2.1.4 Asymptotic Properties -- 2.2 Probability Matching -- 2.2.1 Exact Probability Matching -- 2.2.2 The General Case -- 2.2.3 Individually Optimal vs Growth-Optimal Behaviour -- 2.3 Risk Preferences -- 2.3.1 Growth-Optimal Risk Preferences -- 2.3.2 Risk Aversion -- 2.3.3 Loss Aversion -- 2.4 Idiosyncratic versus Systematic Risk -- 2.4.1 Idiosyncratic Risk -- 2.4.2 The General Case -- 2.5 Discussion -- 3 Mutation -- 3.1 Environments with Mutation -- 3.1.1 Asymptotic Population Dynamics -- 3.1.2 Extinction Probability -- 3.2 The Optimal Degree of Irrationality -- 3.2.1 An Example with Two Behaviours -- 3.3 Generalization and Simulation -- 3.3.1 Symmetric Regimes -- 3.3.2 Asymmetric Regimes -- 3.3.3 When Mutation Is Undesirable -- 3.3.4 Optimal Degree of Irrationality -- 3.4 Discussion -- 4 Group Selection -- 4.1 Environments with Factor Structure -- 4.2 Individual versus Group Optimality -- 4.3 Multinomial Choice with Multiple Factors -- 4.4 A Numerical Example -- 4.5 Discussion -- Part II. BEHAVIOUR -- 5 Probability Matching -- 5.1 The Binary Choice Game -- 5.2 Summary Statistics -- 5.3 A Model of Individual Behaviour -- 5.4 Initial Learning -- 5.5 Decision Autocorrelation -- 5.6 Probability Matching -- 5.7 Individual Differences -- 5.8 Discussion -- 6 Risk Aversion
6.1 Environments with Mixed Risks -- 6.2 Individual Preferences -- 6.3 Risk Aversion and Systematic Risk -- 6.4 Common Distributions of Relative Fecundity -- 6.5 Testable Implications -- 6.5.1 Biology and Behavioural Ecology -- 6.5.2 Financial Economics -- 6.5.3 The Equity Premium and Systematic Risk -- 6.6 Discussion -- 7 Cooperation -- 7.1 Environments with Interactions -- 7.1.1 Assumptions -- 7.1.2 Results -- 7.1.3 Evolutionary Optimality -- 7.1.4 Idiosyncratic Risk -- 7.1.5 Random Matching -- 7.1.6 Density Dependence -- 7.2 Behavioural Implications -- 7.2.1 Specialization -- 7.2.2 Sacrifice -- 7.2.3 Coordination -- 7.3 Discussion -- 8 Bounded Rationality and Intelligence -- 8.1 Environments with Intelligence -- 8.2 An Evolutionary Definition of Intelligence -- 8.3 Bounded Rationality -- 8.4 A Universal Measure of Intelligence and its Cost -- 8.5 Upper Bound on Correlation -- 8.6 Intelligence across Generations -- 8.6.1 No Inter-Generational Variation -- 8.6.2 Inter-Generational Variation -- 8.7 Discussion -- 9 Learning to be Bayesian -- 9.1 Environments with States -- 9.2 Bayesian Behaviours in Stationary Environments -- 9.3 What is Intelligence? Revisited -- 9.4 Finite Memory in Nonstationary Environments -- 9.5 Sampling with Limited Information -- 9.6 Discussion -- 10 The Madness of Mobs -- 10.1 Political Polarization -- 10.1.1 A Simple Example -- 10.1.2 The General Case -- 10.2 Bias and Discrimination -- 10.2.1 A Simple Example -- 10.2.2 Feedback Loops -- 10.2.3 Locally Evolutionarily Stable Strategies -- 10.2.4 Feedback Can Lead to Greater Bias -- 10.2.5 Path-Dependent Evolution -- 10.3 Practical Implications -- 10.4 Discussion -- Part III. NEURONS -- 11 Fear, Greed, and Financial Crises -- 11.1 A Brief History of the Brain -- 11.2 Fear -- 11.3 Greed -- 11.4 Risk -- 11.5 Rationality -- 11.6 Sentience -- 11.7 Interactions Among Components
11.8 Evolution at the Speed of Thought -- 11.9 Practical Implications -- 11.10 Discussion -- 12 The Psychophysiology of Trading -- 12.1 Measuring Emotional Response -- 12.2 Experimental Design -- 12.3 Results -- 12.4 Discussion -- 13 What Makes a Good Day Trader? -- 13.1 Risk-Taking and Emotion -- 13.1.1 Emotion, Personality, and Preferences -- 13.1.2 Emotional Response Metrics -- 13.2 Experimental Design -- 13.3 Results -- 13.3.1 Personality Traits and Trading Performance -- 13.3.2 Emotional States and Trading Performance -- 13.4 Discussion -- Part IV. FINANCIAL MARKET DYNAMICS -- 14 A Computational View of Market Efficiency -- 14.1 The Model -- 14.2 A Computational Definition of Market Efficiency -- 14.3 Market Evolution -- 14.3.1 Market Spikes -- 14.3.2 High-Memory Strategies Feed off Low-Memory Strategies -- 14.4 A Financial Turing Test -- 14.5 Experimental Design -- 14.6 Synthetic Processes and Results -- 14.6.1 Random Permutation -- 14.6.2 A Variant -- 14.6.3 AR(1) -- 14.6.4 Comparison of Random Permutation and AR(1) Results -- 14.6.5 Learning -- 14.7 Discussion -- 15 Maximizing Relative versus Absolute Wealth -- 15.1 The Kelly Criterion -- 15.2 Maximizing Relative Wealth -- 15.2.1 One-Period Results -- 15.2.2 Multi-Period Results -- 15.2.3 Infinite Horizon -- 15.3 A Numerical Example -- 15.3.1 Maximizing One-Period Relative Wealth -- 15.3.2 Maximizing Multi-Period Relative Wealth -- 15.4 Testable Implications -- 15.5 Discussion -- 16 Hedge Funds: The Galápagos Islands of Finance -- 16.1 Hedge Fund Characteristics -- 16.1.1 Fees -- 16.1.2 Leverage -- 16.1.3 Share Restrictions -- 16.1.4 Fund Flows and Capital Formation -- 16.2 An Overview of Hedge Fund Return Data -- 16.2.1 Data Sources -- 16.2.2 Biases -- 16.2.3 Entries and Exits -- 16.2.4 Hedge Fund Indexes -- 16.3 Investment Performance -- 16.3.1 Basic Performance Studies
16.3.2 Performance Persistence -- 16.3.3 Timing Ability -- 16.3.4 Hedge Fund Styles -- 16.4 Illiquidity -- 16.4.1 Measures of Illiquidity and Return Smoothing -- 16.4.2 Illiquidity and Statistical Biases -- 16.4.3 Measuring Illiquidity Risk Premia -- 16.4.4 The Mean-Variance-Illiquidity Frontier -- 16.5 Hedge Fund Risks -- 16.5.1 Value at Risk and Risk Shifting -- 16.5.2 Linear Factor Models -- 16.5.3 Limitations of Hedge Fund Factor Models -- 16.5.4 Operational Risks -- 16.5.5 Risk Management -- 16.5.6 Hedge Fund Beta Replication -- 16.6 The Financial Crisis -- 16.6.1 Early Warning Signs of the Crisis -- 16.6.2 Winners and Losers -- 16.6.3 Post-Crisis Performance -- 16.6.4 Hedge Funds and Systemic Risk -- 16.7 Implementation Issues for Hedge Fund Investing -- 16.7.1 The Limits of Mean-Variance Optimization -- 16.7.2 Over Diversification -- 16.7.3 Investment Implications -- 16.7.4 An Integrated Hedge Fund Investment Process -- 16.7.5 Implications for Adaptive Markets -- 16.8 Discussion -- 17 What Happened to the Quants in August 2007? -- 17.1 The Data -- 17.1.1 Compustat Data -- 17.1.2 TAQ Transactions Data -- 17.2 Factor Portfolios -- 17.2.1 Factor Construction -- 17.2.2 Market Behaviour in 2007 -- 17.2.3 Evidence from Transactions Data -- 17.3 Measures of Market Liquidity -- 17.3.1 Market-making and Contrarian Profits -- 17.3.2 Market Liquidity: 1995-2007 -- 17.3.3 Market Liquidity in 2007 -- 17.3.4 Determining the Epicentre of the Quake -- 17.4 Discussion -- Part V. FINANCIAL INSTITUTIONS AND ADAPTATION -- 18 The Co-Evolution of Financial Markets and Technology -- 18.1 Historical Context -- 18.2 The Evolution of Technology and Finance -- 18.3 Timetable of Financial Evolution -- 18.4 The Eight Eras of Financial Evolution -- 18.4.1 1944-1951: Classical Financial Era -- 18.4.2 1952-1963: The Modern Portfolio Theory Era
18.4.3 1964-1972: The Alpha Beta Era -- 18.4.4 1973-1981: The Derivatives Era -- 18.4.5 1982-1988: The Automation Era -- 18.4.6 1989-1999: The Financial Globalization Era -- 18.4.7 2000-2009: The Algorithmic Trading Era -- 18.4.8 2010-2021: The Digital Assets Era -- 18.5 Discussion -- 19 The Role of Culture in Finance -- 19.1 What is Culture? -- 19.2 What Determines Corporate Values? -- 19.2.1 Values from the Top Down: Authority and Leadership -- 19.2.2 Values from the Bottom Up: Composition -- 19.2.3 Values from the Environment: Risk and Regulation -- 19.2.4 Values from Economists: Responding to Incentives -- 19.2.5 Values from Evolution: The Adaptive Markets Hypothesis -- 19.3 Examples from the Financial Industry -- 19.4 Regulatory Culture -- 19.5 The Importance of Feedback Loops -- 19.6 Behavioural Risk Management -- 19.7 Discussion -- 20 Regulation and Adaptive Markets -- 20.1 Measures of Systemic Risk -- 20.2 The Shadow Banking System -- 20.3 The Shadow Hedge Fund System -- 20.4 Behavioural Foundations of Systemic Risk -- 20.5 A Process for Regulatory Design and Reform -- 20.6 The Capital Markets Safety Board -- 20.7 Transparency and Fair Value Accounting -- 20.8 The Role of Technology and Education -- 20.9 The Role of Corporate Governance -- 20.10 Discussion -- Epilogue -- Appendix A: Notational Glossary -- Appendix B: Proofs and Additional Results -- B.1 Chapter 2: The Binary Choice Model -- B.1.1 Proof of Proposition 2.1 -- B.1.2 Proof of Corollary 2.1 -- B.1.3 Proof of Proposition 2.2 -- B.1.4 Proof of Proposition 2.3 -- B.1.5 Proof of Corollary 2.2 -- B.1.6 Proof of Proposition 2.4 -- B.1.7 Proof of Proposition 2.5 -- B.1.8 Proof of Corollary 2.4 -- B.1.9 Proof of Corollary 2.5 -- B.2 Chapter 3: Mutation -- B.2.1 Proof of Lemma B.1 -- B.2.2 Proof of Proposition 3.1 -- B.2.3 Proof of Proposition 3.2 -- B.2.4 Proof of Proposition 3.3
B.2.5 Proof of Proposition 3.4
ctrlnum (ZDB-30-PQE)EBC31131780
(ZDB-30-PAD)EBC31131780
(ZDB-89-EBL)EBL31131780
(OCoLC)1466901015
(DE-599)BVBBV049871734
discipline Wirtschaftswissenschaften
edition 1st ed
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049871734</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240918s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780192885692</subfield><subfield code="9">978-0-19-288569-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC31131780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC31131780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL31131780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1466901015</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049871734</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QK 640</subfield><subfield code="0">(DE-625)141673:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QK 600</subfield><subfield code="0">(DE-625)141666:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lo, Andrew W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Adaptive Markets Hypothesis</subfield><subfield code="b">An Evolutionary Approach to Understanding Financial System Dynamics</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press, Incorporated</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (801 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Clarendon Lectures in Finance Series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title page -- Copyright page -- Acknowledgements -- Contents -- List of Figures -- List of Tables -- 1 Introduction and Roadmap -- 1.1 Behaviour and Rationality -- 1.2 'Anomalies' -- 1.3 Environment and Evolution -- 1.4 The Traditional Investment Paradigm -- 1.5 A New World Order -- 1.6 The Adaptive Markets Hypothesis -- 1.7 Practical Implications -- 1.8 Organizational Structure of the Book -- Part I. FOUNDATIONS -- 2 The Origin of Behaviour -- 2.1 The Binary Choice Model -- 2.1.1 The Role of Φ(xa,xb) -- 2.1.2 Individual Behaviour -- 2.1.3 Population Dynamics -- 2.1.4 Asymptotic Properties -- 2.2 Probability Matching -- 2.2.1 Exact Probability Matching -- 2.2.2 The General Case -- 2.2.3 Individually Optimal vs Growth-Optimal Behaviour -- 2.3 Risk Preferences -- 2.3.1 Growth-Optimal Risk Preferences -- 2.3.2 Risk Aversion -- 2.3.3 Loss Aversion -- 2.4 Idiosyncratic versus Systematic Risk -- 2.4.1 Idiosyncratic Risk -- 2.4.2 The General Case -- 2.5 Discussion -- 3 Mutation -- 3.1 Environments with Mutation -- 3.1.1 Asymptotic Population Dynamics -- 3.1.2 Extinction Probability -- 3.2 The Optimal Degree of Irrationality -- 3.2.1 An Example with Two Behaviours -- 3.3 Generalization and Simulation -- 3.3.1 Symmetric Regimes -- 3.3.2 Asymmetric Regimes -- 3.3.3 When Mutation Is Undesirable -- 3.3.4 Optimal Degree of Irrationality -- 3.4 Discussion -- 4 Group Selection -- 4.1 Environments with Factor Structure -- 4.2 Individual versus Group Optimality -- 4.3 Multinomial Choice with Multiple Factors -- 4.4 A Numerical Example -- 4.5 Discussion -- Part II. BEHAVIOUR -- 5 Probability Matching -- 5.1 The Binary Choice Game -- 5.2 Summary Statistics -- 5.3 A Model of Individual Behaviour -- 5.4 Initial Learning -- 5.5 Decision Autocorrelation -- 5.6 Probability Matching -- 5.7 Individual Differences -- 5.8 Discussion -- 6 Risk Aversion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.1 Environments with Mixed Risks -- 6.2 Individual Preferences -- 6.3 Risk Aversion and Systematic Risk -- 6.4 Common Distributions of Relative Fecundity -- 6.5 Testable Implications -- 6.5.1 Biology and Behavioural Ecology -- 6.5.2 Financial Economics -- 6.5.3 The Equity Premium and Systematic Risk -- 6.6 Discussion -- 7 Cooperation -- 7.1 Environments with Interactions -- 7.1.1 Assumptions -- 7.1.2 Results -- 7.1.3 Evolutionary Optimality -- 7.1.4 Idiosyncratic Risk -- 7.1.5 Random Matching -- 7.1.6 Density Dependence -- 7.2 Behavioural Implications -- 7.2.1 Specialization -- 7.2.2 Sacrifice -- 7.2.3 Coordination -- 7.3 Discussion -- 8 Bounded Rationality and Intelligence -- 8.1 Environments with Intelligence -- 8.2 An Evolutionary Definition of Intelligence -- 8.3 Bounded Rationality -- 8.4 A Universal Measure of Intelligence and its Cost -- 8.5 Upper Bound on Correlation -- 8.6 Intelligence across Generations -- 8.6.1 No Inter-Generational Variation -- 8.6.2 Inter-Generational Variation -- 8.7 Discussion -- 9 Learning to be Bayesian -- 9.1 Environments with States -- 9.2 Bayesian Behaviours in Stationary Environments -- 9.3 What is Intelligence? Revisited -- 9.4 Finite Memory in Nonstationary Environments -- 9.5 Sampling with Limited Information -- 9.6 Discussion -- 10 The Madness of Mobs -- 10.1 Political Polarization -- 10.1.1 A Simple Example -- 10.1.2 The General Case -- 10.2 Bias and Discrimination -- 10.2.1 A Simple Example -- 10.2.2 Feedback Loops -- 10.2.3 Locally Evolutionarily Stable Strategies -- 10.2.4 Feedback Can Lead to Greater Bias -- 10.2.5 Path-Dependent Evolution -- 10.3 Practical Implications -- 10.4 Discussion -- Part III. NEURONS -- 11 Fear, Greed, and Financial Crises -- 11.1 A Brief History of the Brain -- 11.2 Fear -- 11.3 Greed -- 11.4 Risk -- 11.5 Rationality -- 11.6 Sentience -- 11.7 Interactions Among Components</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.8 Evolution at the Speed of Thought -- 11.9 Practical Implications -- 11.10 Discussion -- 12 The Psychophysiology of Trading -- 12.1 Measuring Emotional Response -- 12.2 Experimental Design -- 12.3 Results -- 12.4 Discussion -- 13 What Makes a Good Day Trader? -- 13.1 Risk-Taking and Emotion -- 13.1.1 Emotion, Personality, and Preferences -- 13.1.2 Emotional Response Metrics -- 13.2 Experimental Design -- 13.3 Results -- 13.3.1 Personality Traits and Trading Performance -- 13.3.2 Emotional States and Trading Performance -- 13.4 Discussion -- Part IV. FINANCIAL MARKET DYNAMICS -- 14 A Computational View of Market Efficiency -- 14.1 The Model -- 14.2 A Computational Definition of Market Efficiency -- 14.3 Market Evolution -- 14.3.1 Market Spikes -- 14.3.2 High-Memory Strategies Feed off Low-Memory Strategies -- 14.4 A Financial Turing Test -- 14.5 Experimental Design -- 14.6 Synthetic Processes and Results -- 14.6.1 Random Permutation -- 14.6.2 A Variant -- 14.6.3 AR(1) -- 14.6.4 Comparison of Random Permutation and AR(1) Results -- 14.6.5 Learning -- 14.7 Discussion -- 15 Maximizing Relative versus Absolute Wealth -- 15.1 The Kelly Criterion -- 15.2 Maximizing Relative Wealth -- 15.2.1 One-Period Results -- 15.2.2 Multi-Period Results -- 15.2.3 Infinite Horizon -- 15.3 A Numerical Example -- 15.3.1 Maximizing One-Period Relative Wealth -- 15.3.2 Maximizing Multi-Period Relative Wealth -- 15.4 Testable Implications -- 15.5 Discussion -- 16 Hedge Funds: The Galápagos Islands of Finance -- 16.1 Hedge Fund Characteristics -- 16.1.1 Fees -- 16.1.2 Leverage -- 16.1.3 Share Restrictions -- 16.1.4 Fund Flows and Capital Formation -- 16.2 An Overview of Hedge Fund Return Data -- 16.2.1 Data Sources -- 16.2.2 Biases -- 16.2.3 Entries and Exits -- 16.2.4 Hedge Fund Indexes -- 16.3 Investment Performance -- 16.3.1 Basic Performance Studies</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">16.3.2 Performance Persistence -- 16.3.3 Timing Ability -- 16.3.4 Hedge Fund Styles -- 16.4 Illiquidity -- 16.4.1 Measures of Illiquidity and Return Smoothing -- 16.4.2 Illiquidity and Statistical Biases -- 16.4.3 Measuring Illiquidity Risk Premia -- 16.4.4 The Mean-Variance-Illiquidity Frontier -- 16.5 Hedge Fund Risks -- 16.5.1 Value at Risk and Risk Shifting -- 16.5.2 Linear Factor Models -- 16.5.3 Limitations of Hedge Fund Factor Models -- 16.5.4 Operational Risks -- 16.5.5 Risk Management -- 16.5.6 Hedge Fund Beta Replication -- 16.6 The Financial Crisis -- 16.6.1 Early Warning Signs of the Crisis -- 16.6.2 Winners and Losers -- 16.6.3 Post-Crisis Performance -- 16.6.4 Hedge Funds and Systemic Risk -- 16.7 Implementation Issues for Hedge Fund Investing -- 16.7.1 The Limits of Mean-Variance Optimization -- 16.7.2 Over Diversification -- 16.7.3 Investment Implications -- 16.7.4 An Integrated Hedge Fund Investment Process -- 16.7.5 Implications for Adaptive Markets -- 16.8 Discussion -- 17 What Happened to the Quants in August 2007? -- 17.1 The Data -- 17.1.1 Compustat Data -- 17.1.2 TAQ Transactions Data -- 17.2 Factor Portfolios -- 17.2.1 Factor Construction -- 17.2.2 Market Behaviour in 2007 -- 17.2.3 Evidence from Transactions Data -- 17.3 Measures of Market Liquidity -- 17.3.1 Market-making and Contrarian Profits -- 17.3.2 Market Liquidity: 1995-2007 -- 17.3.3 Market Liquidity in 2007 -- 17.3.4 Determining the Epicentre of the Quake -- 17.4 Discussion -- Part V. FINANCIAL INSTITUTIONS AND ADAPTATION -- 18 The Co-Evolution of Financial Markets and Technology -- 18.1 Historical Context -- 18.2 The Evolution of Technology and Finance -- 18.3 Timetable of Financial Evolution -- 18.4 The Eight Eras of Financial Evolution -- 18.4.1 1944-1951: Classical Financial Era -- 18.4.2 1952-1963: The Modern Portfolio Theory Era</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">18.4.3 1964-1972: The Alpha Beta Era -- 18.4.4 1973-1981: The Derivatives Era -- 18.4.5 1982-1988: The Automation Era -- 18.4.6 1989-1999: The Financial Globalization Era -- 18.4.7 2000-2009: The Algorithmic Trading Era -- 18.4.8 2010-2021: The Digital Assets Era -- 18.5 Discussion -- 19 The Role of Culture in Finance -- 19.1 What is Culture? -- 19.2 What Determines Corporate Values? -- 19.2.1 Values from the Top Down: Authority and Leadership -- 19.2.2 Values from the Bottom Up: Composition -- 19.2.3 Values from the Environment: Risk and Regulation -- 19.2.4 Values from Economists: Responding to Incentives -- 19.2.5 Values from Evolution: The Adaptive Markets Hypothesis -- 19.3 Examples from the Financial Industry -- 19.4 Regulatory Culture -- 19.5 The Importance of Feedback Loops -- 19.6 Behavioural Risk Management -- 19.7 Discussion -- 20 Regulation and Adaptive Markets -- 20.1 Measures of Systemic Risk -- 20.2 The Shadow Banking System -- 20.3 The Shadow Hedge Fund System -- 20.4 Behavioural Foundations of Systemic Risk -- 20.5 A Process for Regulatory Design and Reform -- 20.6 The Capital Markets Safety Board -- 20.7 Transparency and Fair Value Accounting -- 20.8 The Role of Technology and Education -- 20.9 The Role of Corporate Governance -- 20.10 Discussion -- Epilogue -- Appendix A: Notational Glossary -- Appendix B: Proofs and Additional Results -- B.1 Chapter 2: The Binary Choice Model -- B.1.1 Proof of Proposition 2.1 -- B.1.2 Proof of Corollary 2.1 -- B.1.3 Proof of Proposition 2.2 -- B.1.4 Proof of Proposition 2.3 -- B.1.5 Proof of Corollary 2.2 -- B.1.6 Proof of Proposition 2.4 -- B.1.7 Proof of Proposition 2.5 -- B.1.8 Proof of Corollary 2.4 -- B.1.9 Proof of Corollary 2.5 -- B.2 Chapter 3: Mutation -- B.2.1 Proof of Lemma B.1 -- B.2.2 Proof of Proposition 3.1 -- B.2.3 Proof of Proposition 3.2 -- B.2.4 Proof of Proposition 3.3</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">B.2.5 Proof of Proposition 3.4</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Adaptive Markets Hypothesis is a formal and systematic exposition. Lo and Zhang develop the mathematical foundations of the simple yet powerful evolutionary model and show that the most fundamental economic behaviours that we take for granted emerge solely through natural selection</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuroökonomik</subfield><subfield code="0">(DE-588)7613972-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kreditmarkt</subfield><subfield code="0">(DE-588)4073788-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anlageverhalten</subfield><subfield code="0">(DE-588)4214003-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Marktverhalten</subfield><subfield code="0">(DE-588)4135561-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Volatilität</subfield><subfield code="0">(DE-588)4268390-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaftliches Verhalten</subfield><subfield code="0">(DE-588)4197971-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Marktpsychologie</subfield><subfield code="0">(DE-588)4140888-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Anlageverhalten</subfield><subfield code="0">(DE-588)4214003-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kreditmarkt</subfield><subfield code="0">(DE-588)4073788-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Marktpsychologie</subfield><subfield code="0">(DE-588)4140888-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Marktverhalten</subfield><subfield code="0">(DE-588)4135561-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Neuroökonomik</subfield><subfield code="0">(DE-588)7613972-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Volatilität</subfield><subfield code="0">(DE-588)4268390-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Wirtschaftliches Verhalten</subfield><subfield code="0">(DE-588)4197971-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ruixun</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Lo, Andrew W.</subfield><subfield code="t">The Adaptive Markets Hypothesis</subfield><subfield code="d">Oxford : Oxford University Press, Incorporated,c2024</subfield><subfield code="z">9780199681143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035211209</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31131780</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV049871734
illustrated Not Illustrated
indexdate 2025-01-27T14:00:23Z
institution BVB
isbn 9780192885692
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-035211209
oclc_num 1466901015
open_access_boolean
owner DE-2070s
owner_facet DE-2070s
physical 1 Online-Ressource (801 Seiten)
psigel ZDB-30-PQE
ZDB-30-PQE HWR_PDA_PQE
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher Oxford University Press, Incorporated
record_format marc
series2 Clarendon Lectures in Finance Series
spelling Lo, Andrew W. Verfasser aut
The Adaptive Markets Hypothesis An Evolutionary Approach to Understanding Financial System Dynamics
1st ed
Oxford Oxford University Press, Incorporated 2024
©2024
1 Online-Ressource (801 Seiten)
txt rdacontent
c rdamedia
cr rdacarrier
Clarendon Lectures in Finance Series
Description based on publisher supplied metadata and other sources
Cover -- Title page -- Copyright page -- Acknowledgements -- Contents -- List of Figures -- List of Tables -- 1 Introduction and Roadmap -- 1.1 Behaviour and Rationality -- 1.2 'Anomalies' -- 1.3 Environment and Evolution -- 1.4 The Traditional Investment Paradigm -- 1.5 A New World Order -- 1.6 The Adaptive Markets Hypothesis -- 1.7 Practical Implications -- 1.8 Organizational Structure of the Book -- Part I. FOUNDATIONS -- 2 The Origin of Behaviour -- 2.1 The Binary Choice Model -- 2.1.1 The Role of Φ(xa,xb) -- 2.1.2 Individual Behaviour -- 2.1.3 Population Dynamics -- 2.1.4 Asymptotic Properties -- 2.2 Probability Matching -- 2.2.1 Exact Probability Matching -- 2.2.2 The General Case -- 2.2.3 Individually Optimal vs Growth-Optimal Behaviour -- 2.3 Risk Preferences -- 2.3.1 Growth-Optimal Risk Preferences -- 2.3.2 Risk Aversion -- 2.3.3 Loss Aversion -- 2.4 Idiosyncratic versus Systematic Risk -- 2.4.1 Idiosyncratic Risk -- 2.4.2 The General Case -- 2.5 Discussion -- 3 Mutation -- 3.1 Environments with Mutation -- 3.1.1 Asymptotic Population Dynamics -- 3.1.2 Extinction Probability -- 3.2 The Optimal Degree of Irrationality -- 3.2.1 An Example with Two Behaviours -- 3.3 Generalization and Simulation -- 3.3.1 Symmetric Regimes -- 3.3.2 Asymmetric Regimes -- 3.3.3 When Mutation Is Undesirable -- 3.3.4 Optimal Degree of Irrationality -- 3.4 Discussion -- 4 Group Selection -- 4.1 Environments with Factor Structure -- 4.2 Individual versus Group Optimality -- 4.3 Multinomial Choice with Multiple Factors -- 4.4 A Numerical Example -- 4.5 Discussion -- Part II. BEHAVIOUR -- 5 Probability Matching -- 5.1 The Binary Choice Game -- 5.2 Summary Statistics -- 5.3 A Model of Individual Behaviour -- 5.4 Initial Learning -- 5.5 Decision Autocorrelation -- 5.6 Probability Matching -- 5.7 Individual Differences -- 5.8 Discussion -- 6 Risk Aversion
6.1 Environments with Mixed Risks -- 6.2 Individual Preferences -- 6.3 Risk Aversion and Systematic Risk -- 6.4 Common Distributions of Relative Fecundity -- 6.5 Testable Implications -- 6.5.1 Biology and Behavioural Ecology -- 6.5.2 Financial Economics -- 6.5.3 The Equity Premium and Systematic Risk -- 6.6 Discussion -- 7 Cooperation -- 7.1 Environments with Interactions -- 7.1.1 Assumptions -- 7.1.2 Results -- 7.1.3 Evolutionary Optimality -- 7.1.4 Idiosyncratic Risk -- 7.1.5 Random Matching -- 7.1.6 Density Dependence -- 7.2 Behavioural Implications -- 7.2.1 Specialization -- 7.2.2 Sacrifice -- 7.2.3 Coordination -- 7.3 Discussion -- 8 Bounded Rationality and Intelligence -- 8.1 Environments with Intelligence -- 8.2 An Evolutionary Definition of Intelligence -- 8.3 Bounded Rationality -- 8.4 A Universal Measure of Intelligence and its Cost -- 8.5 Upper Bound on Correlation -- 8.6 Intelligence across Generations -- 8.6.1 No Inter-Generational Variation -- 8.6.2 Inter-Generational Variation -- 8.7 Discussion -- 9 Learning to be Bayesian -- 9.1 Environments with States -- 9.2 Bayesian Behaviours in Stationary Environments -- 9.3 What is Intelligence? Revisited -- 9.4 Finite Memory in Nonstationary Environments -- 9.5 Sampling with Limited Information -- 9.6 Discussion -- 10 The Madness of Mobs -- 10.1 Political Polarization -- 10.1.1 A Simple Example -- 10.1.2 The General Case -- 10.2 Bias and Discrimination -- 10.2.1 A Simple Example -- 10.2.2 Feedback Loops -- 10.2.3 Locally Evolutionarily Stable Strategies -- 10.2.4 Feedback Can Lead to Greater Bias -- 10.2.5 Path-Dependent Evolution -- 10.3 Practical Implications -- 10.4 Discussion -- Part III. NEURONS -- 11 Fear, Greed, and Financial Crises -- 11.1 A Brief History of the Brain -- 11.2 Fear -- 11.3 Greed -- 11.4 Risk -- 11.5 Rationality -- 11.6 Sentience -- 11.7 Interactions Among Components
11.8 Evolution at the Speed of Thought -- 11.9 Practical Implications -- 11.10 Discussion -- 12 The Psychophysiology of Trading -- 12.1 Measuring Emotional Response -- 12.2 Experimental Design -- 12.3 Results -- 12.4 Discussion -- 13 What Makes a Good Day Trader? -- 13.1 Risk-Taking and Emotion -- 13.1.1 Emotion, Personality, and Preferences -- 13.1.2 Emotional Response Metrics -- 13.2 Experimental Design -- 13.3 Results -- 13.3.1 Personality Traits and Trading Performance -- 13.3.2 Emotional States and Trading Performance -- 13.4 Discussion -- Part IV. FINANCIAL MARKET DYNAMICS -- 14 A Computational View of Market Efficiency -- 14.1 The Model -- 14.2 A Computational Definition of Market Efficiency -- 14.3 Market Evolution -- 14.3.1 Market Spikes -- 14.3.2 High-Memory Strategies Feed off Low-Memory Strategies -- 14.4 A Financial Turing Test -- 14.5 Experimental Design -- 14.6 Synthetic Processes and Results -- 14.6.1 Random Permutation -- 14.6.2 A Variant -- 14.6.3 AR(1) -- 14.6.4 Comparison of Random Permutation and AR(1) Results -- 14.6.5 Learning -- 14.7 Discussion -- 15 Maximizing Relative versus Absolute Wealth -- 15.1 The Kelly Criterion -- 15.2 Maximizing Relative Wealth -- 15.2.1 One-Period Results -- 15.2.2 Multi-Period Results -- 15.2.3 Infinite Horizon -- 15.3 A Numerical Example -- 15.3.1 Maximizing One-Period Relative Wealth -- 15.3.2 Maximizing Multi-Period Relative Wealth -- 15.4 Testable Implications -- 15.5 Discussion -- 16 Hedge Funds: The Galápagos Islands of Finance -- 16.1 Hedge Fund Characteristics -- 16.1.1 Fees -- 16.1.2 Leverage -- 16.1.3 Share Restrictions -- 16.1.4 Fund Flows and Capital Formation -- 16.2 An Overview of Hedge Fund Return Data -- 16.2.1 Data Sources -- 16.2.2 Biases -- 16.2.3 Entries and Exits -- 16.2.4 Hedge Fund Indexes -- 16.3 Investment Performance -- 16.3.1 Basic Performance Studies
16.3.2 Performance Persistence -- 16.3.3 Timing Ability -- 16.3.4 Hedge Fund Styles -- 16.4 Illiquidity -- 16.4.1 Measures of Illiquidity and Return Smoothing -- 16.4.2 Illiquidity and Statistical Biases -- 16.4.3 Measuring Illiquidity Risk Premia -- 16.4.4 The Mean-Variance-Illiquidity Frontier -- 16.5 Hedge Fund Risks -- 16.5.1 Value at Risk and Risk Shifting -- 16.5.2 Linear Factor Models -- 16.5.3 Limitations of Hedge Fund Factor Models -- 16.5.4 Operational Risks -- 16.5.5 Risk Management -- 16.5.6 Hedge Fund Beta Replication -- 16.6 The Financial Crisis -- 16.6.1 Early Warning Signs of the Crisis -- 16.6.2 Winners and Losers -- 16.6.3 Post-Crisis Performance -- 16.6.4 Hedge Funds and Systemic Risk -- 16.7 Implementation Issues for Hedge Fund Investing -- 16.7.1 The Limits of Mean-Variance Optimization -- 16.7.2 Over Diversification -- 16.7.3 Investment Implications -- 16.7.4 An Integrated Hedge Fund Investment Process -- 16.7.5 Implications for Adaptive Markets -- 16.8 Discussion -- 17 What Happened to the Quants in August 2007? -- 17.1 The Data -- 17.1.1 Compustat Data -- 17.1.2 TAQ Transactions Data -- 17.2 Factor Portfolios -- 17.2.1 Factor Construction -- 17.2.2 Market Behaviour in 2007 -- 17.2.3 Evidence from Transactions Data -- 17.3 Measures of Market Liquidity -- 17.3.1 Market-making and Contrarian Profits -- 17.3.2 Market Liquidity: 1995-2007 -- 17.3.3 Market Liquidity in 2007 -- 17.3.4 Determining the Epicentre of the Quake -- 17.4 Discussion -- Part V. FINANCIAL INSTITUTIONS AND ADAPTATION -- 18 The Co-Evolution of Financial Markets and Technology -- 18.1 Historical Context -- 18.2 The Evolution of Technology and Finance -- 18.3 Timetable of Financial Evolution -- 18.4 The Eight Eras of Financial Evolution -- 18.4.1 1944-1951: Classical Financial Era -- 18.4.2 1952-1963: The Modern Portfolio Theory Era
18.4.3 1964-1972: The Alpha Beta Era -- 18.4.4 1973-1981: The Derivatives Era -- 18.4.5 1982-1988: The Automation Era -- 18.4.6 1989-1999: The Financial Globalization Era -- 18.4.7 2000-2009: The Algorithmic Trading Era -- 18.4.8 2010-2021: The Digital Assets Era -- 18.5 Discussion -- 19 The Role of Culture in Finance -- 19.1 What is Culture? -- 19.2 What Determines Corporate Values? -- 19.2.1 Values from the Top Down: Authority and Leadership -- 19.2.2 Values from the Bottom Up: Composition -- 19.2.3 Values from the Environment: Risk and Regulation -- 19.2.4 Values from Economists: Responding to Incentives -- 19.2.5 Values from Evolution: The Adaptive Markets Hypothesis -- 19.3 Examples from the Financial Industry -- 19.4 Regulatory Culture -- 19.5 The Importance of Feedback Loops -- 19.6 Behavioural Risk Management -- 19.7 Discussion -- 20 Regulation and Adaptive Markets -- 20.1 Measures of Systemic Risk -- 20.2 The Shadow Banking System -- 20.3 The Shadow Hedge Fund System -- 20.4 Behavioural Foundations of Systemic Risk -- 20.5 A Process for Regulatory Design and Reform -- 20.6 The Capital Markets Safety Board -- 20.7 Transparency and Fair Value Accounting -- 20.8 The Role of Technology and Education -- 20.9 The Role of Corporate Governance -- 20.10 Discussion -- Epilogue -- Appendix A: Notational Glossary -- Appendix B: Proofs and Additional Results -- B.1 Chapter 2: The Binary Choice Model -- B.1.1 Proof of Proposition 2.1 -- B.1.2 Proof of Corollary 2.1 -- B.1.3 Proof of Proposition 2.2 -- B.1.4 Proof of Proposition 2.3 -- B.1.5 Proof of Corollary 2.2 -- B.1.6 Proof of Proposition 2.4 -- B.1.7 Proof of Proposition 2.5 -- B.1.8 Proof of Corollary 2.4 -- B.1.9 Proof of Corollary 2.5 -- B.2 Chapter 3: Mutation -- B.2.1 Proof of Lemma B.1 -- B.2.2 Proof of Proposition 3.1 -- B.2.3 Proof of Proposition 3.2 -- B.2.4 Proof of Proposition 3.3
B.2.5 Proof of Proposition 3.4
The Adaptive Markets Hypothesis is a formal and systematic exposition. Lo and Zhang develop the mathematical foundations of the simple yet powerful evolutionary model and show that the most fundamental economic behaviours that we take for granted emerge solely through natural selection
Neuroökonomik (DE-588)7613972-4 gnd rswk-swf
Kreditmarkt (DE-588)4073788-3 gnd rswk-swf
Anlageverhalten (DE-588)4214003-1 gnd rswk-swf
Marktverhalten (DE-588)4135561-1 gnd rswk-swf
Volatilität (DE-588)4268390-7 gnd rswk-swf
Wirtschaftliches Verhalten (DE-588)4197971-0 gnd rswk-swf
Marktpsychologie (DE-588)4140888-3 gnd rswk-swf
Anlageverhalten (DE-588)4214003-1 s
Kreditmarkt (DE-588)4073788-3 s
Marktpsychologie (DE-588)4140888-3 s
Marktverhalten (DE-588)4135561-1 s
Neuroökonomik (DE-588)7613972-4 s
Volatilität (DE-588)4268390-7 s
Wirtschaftliches Verhalten (DE-588)4197971-0 s
DE-604
Zhang, Ruixun Sonstige oth
Erscheint auch als Druck-Ausgabe Lo, Andrew W. The Adaptive Markets Hypothesis Oxford : Oxford University Press, Incorporated,c2024 9780199681143
spellingShingle Lo, Andrew W.
The Adaptive Markets Hypothesis An Evolutionary Approach to Understanding Financial System Dynamics
Cover -- Title page -- Copyright page -- Acknowledgements -- Contents -- List of Figures -- List of Tables -- 1 Introduction and Roadmap -- 1.1 Behaviour and Rationality -- 1.2 'Anomalies' -- 1.3 Environment and Evolution -- 1.4 The Traditional Investment Paradigm -- 1.5 A New World Order -- 1.6 The Adaptive Markets Hypothesis -- 1.7 Practical Implications -- 1.8 Organizational Structure of the Book -- Part I. FOUNDATIONS -- 2 The Origin of Behaviour -- 2.1 The Binary Choice Model -- 2.1.1 The Role of Φ(xa,xb) -- 2.1.2 Individual Behaviour -- 2.1.3 Population Dynamics -- 2.1.4 Asymptotic Properties -- 2.2 Probability Matching -- 2.2.1 Exact Probability Matching -- 2.2.2 The General Case -- 2.2.3 Individually Optimal vs Growth-Optimal Behaviour -- 2.3 Risk Preferences -- 2.3.1 Growth-Optimal Risk Preferences -- 2.3.2 Risk Aversion -- 2.3.3 Loss Aversion -- 2.4 Idiosyncratic versus Systematic Risk -- 2.4.1 Idiosyncratic Risk -- 2.4.2 The General Case -- 2.5 Discussion -- 3 Mutation -- 3.1 Environments with Mutation -- 3.1.1 Asymptotic Population Dynamics -- 3.1.2 Extinction Probability -- 3.2 The Optimal Degree of Irrationality -- 3.2.1 An Example with Two Behaviours -- 3.3 Generalization and Simulation -- 3.3.1 Symmetric Regimes -- 3.3.2 Asymmetric Regimes -- 3.3.3 When Mutation Is Undesirable -- 3.3.4 Optimal Degree of Irrationality -- 3.4 Discussion -- 4 Group Selection -- 4.1 Environments with Factor Structure -- 4.2 Individual versus Group Optimality -- 4.3 Multinomial Choice with Multiple Factors -- 4.4 A Numerical Example -- 4.5 Discussion -- Part II. BEHAVIOUR -- 5 Probability Matching -- 5.1 The Binary Choice Game -- 5.2 Summary Statistics -- 5.3 A Model of Individual Behaviour -- 5.4 Initial Learning -- 5.5 Decision Autocorrelation -- 5.6 Probability Matching -- 5.7 Individual Differences -- 5.8 Discussion -- 6 Risk Aversion
6.1 Environments with Mixed Risks -- 6.2 Individual Preferences -- 6.3 Risk Aversion and Systematic Risk -- 6.4 Common Distributions of Relative Fecundity -- 6.5 Testable Implications -- 6.5.1 Biology and Behavioural Ecology -- 6.5.2 Financial Economics -- 6.5.3 The Equity Premium and Systematic Risk -- 6.6 Discussion -- 7 Cooperation -- 7.1 Environments with Interactions -- 7.1.1 Assumptions -- 7.1.2 Results -- 7.1.3 Evolutionary Optimality -- 7.1.4 Idiosyncratic Risk -- 7.1.5 Random Matching -- 7.1.6 Density Dependence -- 7.2 Behavioural Implications -- 7.2.1 Specialization -- 7.2.2 Sacrifice -- 7.2.3 Coordination -- 7.3 Discussion -- 8 Bounded Rationality and Intelligence -- 8.1 Environments with Intelligence -- 8.2 An Evolutionary Definition of Intelligence -- 8.3 Bounded Rationality -- 8.4 A Universal Measure of Intelligence and its Cost -- 8.5 Upper Bound on Correlation -- 8.6 Intelligence across Generations -- 8.6.1 No Inter-Generational Variation -- 8.6.2 Inter-Generational Variation -- 8.7 Discussion -- 9 Learning to be Bayesian -- 9.1 Environments with States -- 9.2 Bayesian Behaviours in Stationary Environments -- 9.3 What is Intelligence? Revisited -- 9.4 Finite Memory in Nonstationary Environments -- 9.5 Sampling with Limited Information -- 9.6 Discussion -- 10 The Madness of Mobs -- 10.1 Political Polarization -- 10.1.1 A Simple Example -- 10.1.2 The General Case -- 10.2 Bias and Discrimination -- 10.2.1 A Simple Example -- 10.2.2 Feedback Loops -- 10.2.3 Locally Evolutionarily Stable Strategies -- 10.2.4 Feedback Can Lead to Greater Bias -- 10.2.5 Path-Dependent Evolution -- 10.3 Practical Implications -- 10.4 Discussion -- Part III. NEURONS -- 11 Fear, Greed, and Financial Crises -- 11.1 A Brief History of the Brain -- 11.2 Fear -- 11.3 Greed -- 11.4 Risk -- 11.5 Rationality -- 11.6 Sentience -- 11.7 Interactions Among Components
11.8 Evolution at the Speed of Thought -- 11.9 Practical Implications -- 11.10 Discussion -- 12 The Psychophysiology of Trading -- 12.1 Measuring Emotional Response -- 12.2 Experimental Design -- 12.3 Results -- 12.4 Discussion -- 13 What Makes a Good Day Trader? -- 13.1 Risk-Taking and Emotion -- 13.1.1 Emotion, Personality, and Preferences -- 13.1.2 Emotional Response Metrics -- 13.2 Experimental Design -- 13.3 Results -- 13.3.1 Personality Traits and Trading Performance -- 13.3.2 Emotional States and Trading Performance -- 13.4 Discussion -- Part IV. FINANCIAL MARKET DYNAMICS -- 14 A Computational View of Market Efficiency -- 14.1 The Model -- 14.2 A Computational Definition of Market Efficiency -- 14.3 Market Evolution -- 14.3.1 Market Spikes -- 14.3.2 High-Memory Strategies Feed off Low-Memory Strategies -- 14.4 A Financial Turing Test -- 14.5 Experimental Design -- 14.6 Synthetic Processes and Results -- 14.6.1 Random Permutation -- 14.6.2 A Variant -- 14.6.3 AR(1) -- 14.6.4 Comparison of Random Permutation and AR(1) Results -- 14.6.5 Learning -- 14.7 Discussion -- 15 Maximizing Relative versus Absolute Wealth -- 15.1 The Kelly Criterion -- 15.2 Maximizing Relative Wealth -- 15.2.1 One-Period Results -- 15.2.2 Multi-Period Results -- 15.2.3 Infinite Horizon -- 15.3 A Numerical Example -- 15.3.1 Maximizing One-Period Relative Wealth -- 15.3.2 Maximizing Multi-Period Relative Wealth -- 15.4 Testable Implications -- 15.5 Discussion -- 16 Hedge Funds: The Galápagos Islands of Finance -- 16.1 Hedge Fund Characteristics -- 16.1.1 Fees -- 16.1.2 Leverage -- 16.1.3 Share Restrictions -- 16.1.4 Fund Flows and Capital Formation -- 16.2 An Overview of Hedge Fund Return Data -- 16.2.1 Data Sources -- 16.2.2 Biases -- 16.2.3 Entries and Exits -- 16.2.4 Hedge Fund Indexes -- 16.3 Investment Performance -- 16.3.1 Basic Performance Studies
16.3.2 Performance Persistence -- 16.3.3 Timing Ability -- 16.3.4 Hedge Fund Styles -- 16.4 Illiquidity -- 16.4.1 Measures of Illiquidity and Return Smoothing -- 16.4.2 Illiquidity and Statistical Biases -- 16.4.3 Measuring Illiquidity Risk Premia -- 16.4.4 The Mean-Variance-Illiquidity Frontier -- 16.5 Hedge Fund Risks -- 16.5.1 Value at Risk and Risk Shifting -- 16.5.2 Linear Factor Models -- 16.5.3 Limitations of Hedge Fund Factor Models -- 16.5.4 Operational Risks -- 16.5.5 Risk Management -- 16.5.6 Hedge Fund Beta Replication -- 16.6 The Financial Crisis -- 16.6.1 Early Warning Signs of the Crisis -- 16.6.2 Winners and Losers -- 16.6.3 Post-Crisis Performance -- 16.6.4 Hedge Funds and Systemic Risk -- 16.7 Implementation Issues for Hedge Fund Investing -- 16.7.1 The Limits of Mean-Variance Optimization -- 16.7.2 Over Diversification -- 16.7.3 Investment Implications -- 16.7.4 An Integrated Hedge Fund Investment Process -- 16.7.5 Implications for Adaptive Markets -- 16.8 Discussion -- 17 What Happened to the Quants in August 2007? -- 17.1 The Data -- 17.1.1 Compustat Data -- 17.1.2 TAQ Transactions Data -- 17.2 Factor Portfolios -- 17.2.1 Factor Construction -- 17.2.2 Market Behaviour in 2007 -- 17.2.3 Evidence from Transactions Data -- 17.3 Measures of Market Liquidity -- 17.3.1 Market-making and Contrarian Profits -- 17.3.2 Market Liquidity: 1995-2007 -- 17.3.3 Market Liquidity in 2007 -- 17.3.4 Determining the Epicentre of the Quake -- 17.4 Discussion -- Part V. FINANCIAL INSTITUTIONS AND ADAPTATION -- 18 The Co-Evolution of Financial Markets and Technology -- 18.1 Historical Context -- 18.2 The Evolution of Technology and Finance -- 18.3 Timetable of Financial Evolution -- 18.4 The Eight Eras of Financial Evolution -- 18.4.1 1944-1951: Classical Financial Era -- 18.4.2 1952-1963: The Modern Portfolio Theory Era
18.4.3 1964-1972: The Alpha Beta Era -- 18.4.4 1973-1981: The Derivatives Era -- 18.4.5 1982-1988: The Automation Era -- 18.4.6 1989-1999: The Financial Globalization Era -- 18.4.7 2000-2009: The Algorithmic Trading Era -- 18.4.8 2010-2021: The Digital Assets Era -- 18.5 Discussion -- 19 The Role of Culture in Finance -- 19.1 What is Culture? -- 19.2 What Determines Corporate Values? -- 19.2.1 Values from the Top Down: Authority and Leadership -- 19.2.2 Values from the Bottom Up: Composition -- 19.2.3 Values from the Environment: Risk and Regulation -- 19.2.4 Values from Economists: Responding to Incentives -- 19.2.5 Values from Evolution: The Adaptive Markets Hypothesis -- 19.3 Examples from the Financial Industry -- 19.4 Regulatory Culture -- 19.5 The Importance of Feedback Loops -- 19.6 Behavioural Risk Management -- 19.7 Discussion -- 20 Regulation and Adaptive Markets -- 20.1 Measures of Systemic Risk -- 20.2 The Shadow Banking System -- 20.3 The Shadow Hedge Fund System -- 20.4 Behavioural Foundations of Systemic Risk -- 20.5 A Process for Regulatory Design and Reform -- 20.6 The Capital Markets Safety Board -- 20.7 Transparency and Fair Value Accounting -- 20.8 The Role of Technology and Education -- 20.9 The Role of Corporate Governance -- 20.10 Discussion -- Epilogue -- Appendix A: Notational Glossary -- Appendix B: Proofs and Additional Results -- B.1 Chapter 2: The Binary Choice Model -- B.1.1 Proof of Proposition 2.1 -- B.1.2 Proof of Corollary 2.1 -- B.1.3 Proof of Proposition 2.2 -- B.1.4 Proof of Proposition 2.3 -- B.1.5 Proof of Corollary 2.2 -- B.1.6 Proof of Proposition 2.4 -- B.1.7 Proof of Proposition 2.5 -- B.1.8 Proof of Corollary 2.4 -- B.1.9 Proof of Corollary 2.5 -- B.2 Chapter 3: Mutation -- B.2.1 Proof of Lemma B.1 -- B.2.2 Proof of Proposition 3.1 -- B.2.3 Proof of Proposition 3.2 -- B.2.4 Proof of Proposition 3.3
B.2.5 Proof of Proposition 3.4
Neuroökonomik (DE-588)7613972-4 gnd
Kreditmarkt (DE-588)4073788-3 gnd
Anlageverhalten (DE-588)4214003-1 gnd
Marktverhalten (DE-588)4135561-1 gnd
Volatilität (DE-588)4268390-7 gnd
Wirtschaftliches Verhalten (DE-588)4197971-0 gnd
Marktpsychologie (DE-588)4140888-3 gnd
subject_GND (DE-588)7613972-4
(DE-588)4073788-3
(DE-588)4214003-1
(DE-588)4135561-1
(DE-588)4268390-7
(DE-588)4197971-0
(DE-588)4140888-3
title The Adaptive Markets Hypothesis An Evolutionary Approach to Understanding Financial System Dynamics
title_auth The Adaptive Markets Hypothesis An Evolutionary Approach to Understanding Financial System Dynamics
title_exact_search The Adaptive Markets Hypothesis An Evolutionary Approach to Understanding Financial System Dynamics
title_full The Adaptive Markets Hypothesis An Evolutionary Approach to Understanding Financial System Dynamics
title_fullStr The Adaptive Markets Hypothesis An Evolutionary Approach to Understanding Financial System Dynamics
title_full_unstemmed The Adaptive Markets Hypothesis An Evolutionary Approach to Understanding Financial System Dynamics
title_short The Adaptive Markets Hypothesis
title_sort the adaptive markets hypothesis an evolutionary approach to understanding financial system dynamics
title_sub An Evolutionary Approach to Understanding Financial System Dynamics
topic Neuroökonomik (DE-588)7613972-4 gnd
Kreditmarkt (DE-588)4073788-3 gnd
Anlageverhalten (DE-588)4214003-1 gnd
Marktverhalten (DE-588)4135561-1 gnd
Volatilität (DE-588)4268390-7 gnd
Wirtschaftliches Verhalten (DE-588)4197971-0 gnd
Marktpsychologie (DE-588)4140888-3 gnd
topic_facet Neuroökonomik
Kreditmarkt
Anlageverhalten
Marktverhalten
Volatilität
Wirtschaftliches Verhalten
Marktpsychologie
work_keys_str_mv AT loandreww theadaptivemarketshypothesisanevolutionaryapproachtounderstandingfinancialsystemdynamics
AT zhangruixun theadaptivemarketshypothesisanevolutionaryapproachtounderstandingfinancialsystemdynamics