Novel Anti-Corrosion and Anti-Fouling Coatings and Thin Films
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
John Wiley & Sons Inc
2024
|
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Beschreibung: | Preface xvii; Acknowledgements xix; 1 Antifouling Nanoparticle Coatings for Post-Harvest Food Preservation 1; Gokuraju Thriveni, Hari Murthy and CH. Anusha; 1.1 Introduction 2; 1.2 Materials Support Post-Harvest 2; 1.3 Computational Methods to Envision the Interaction of Food Residuals with Coated Nanolayers Through Sensing 5; 1.4 Feasible Research Implications to Address the Shortcomings in Food Preservation 7; 2 Toward Stable Electrochemical Water Splitting: Anticorrosive Properties of Transition Metal-Based Electrocatalytic Coatings 13; Kaushal Gavankar, Suchitra Sapakal and Anamika V. Kadam; 2.1 Introduction 14; 2.2 Corrosion Mechanisms 16; 2.3 Methods to Prevent Corrosion 20; 2.4 Anticorrosive Catalytic Coating 23; 2.5 Carbon-Based Anticorrosive Catalytic Coatings 30; 2.6 Discussion 31; 2.7 Conclusion 34; 3 Ionic Liquids in Marine Anti-Fouling Coatings 43; Samantha Taylor, Sajith K. Baiju, Madison K. McQuinlan and Matthew G. - Cowan; 3.1 Introduction 44; 3.2 Current Anti-Fouling Design Strategies 50; 3.3 Poly(Ionic Liquids) as Anti-Fouling Coatings 58; 4 Inorganic Nanomaterial Coating to Prevent Biofouling 77; Anju T. R., Mariat George and Rose Mary Jose; 4.1 Introduction 78; 4.2 Major Industries Affected by Biofouling 80; 4.3 Conventional Antifouling Coatings and their Demerits 81; 4.4 Nanomaterials as Antifoulants: Properties and Mechanisms 83; 4.5 Types of Nanomaterials Used as Antifoulants 85; 4.6 Inorganic Nanomaterials as Antifoulant 85; 4.7 Impact and Challenges of Inorganic Nanomaterials as Antifoulants 101; 4.8 Conclusion 101; 5 Thin Film Transparent Conducting Oxides and its Anticorrosion and Surface Protection Applications: A Review 109; Balaprakash V., Thangavel K., Mahitha Mohan, Gowrisankar P. - and Sakthivel R.; 5.1 About Transparent Conducting Oxides 110; 5.2 Electrical Properties of TCOs 110; 5.3 Optical Properties of TCO 112; 5.4 Need of TCO for Solar Cells and Optoelectronic Devices 115; 5.5 Requirements of TCO 116; 5.6 Commonly Used TCO Materials 116; 5.7 Application of TCOs 117; 5.8 Anti-Corrosion and Surface Protection Application of Doped Zinc Oxide-Based TCO Materials 117; 5.9 NZO Coating Over Stainless Steel 118; 5.10 Conclusion 124; 6 Integrated Anticorrosion and Antifouling Coatings 129; Ankita Kumari, Nirmala Kumari Jangid, Sudesh Kumar, - Rekha Sharma and Navjeet Kaur; 6.1 Introduction 130; 6.2 Mechanisms of Corrosion and Biofouling 131; 6.3 Recent Developments in Integrated Anticorrosion Coatings and Antifouling Coatings 133; 6.4 PNCs Nanocoatings (Polymer Nanocomposites Coatings) 138; 6.5 Marine Environment Durability Test of IAACs 140; 6.6 Evaluation of Various IAACs and Difficulties 140; 6.7 Conclusion and Outlook 141; 7 EIS Study of Anticorrosive Nanocomposite Films 155; Vandana Shinde; 7.1 Importance of Organic-Inorganic Nanocomposite Coatings 156; 7.2 EIS: Brief Basic Principle and Introductions 160; 7.3 EIS Data Analysis: Fitting the Equivalent Electronic Circuit, Introduction of the Various Circuit Parameters Its Physics 176; 7.4 EIS in Anticorrosive Modern Nanocomposite Coatings and Assessment of Corrosion Protection Performance 198; 7.5 Conclusions 202; 8 Graphene-Based Coating on Mild Steel for Improving Anticorrosion and Microhardness Behavior: A Review 211; Sunita Dhar, Tapan Dash, - Ashok Kumar Sahu, Sushree Subhadarshinee Mohapatra, Nibedita Mohanty, Shubhra Bajpai, Tapan Kumar Rout and Surendra Kumar Biswal; 8.1 Introduction of Graphene 212; 8.2 Synthesis Mechanism of Graphene Derivatives 215; 8.3 Typical Characterizations of Graphene Derivatives 217; 8.4 Anticorrosion Mechanisms of Graphene Derivatives and Their Composites 224; 8.5 Anticorrosion Behavior of Graphene Derivative Coating on Mild Steel 229; 8.6 Microhardness Behavior of Graphene Derivative Coating on Mild Steel 236; 8.7 Conclusions 237; 9 Bioinspired Strategies for Corrosion Protection and Antifouling Coatings 251; K. R. C. Soma Raju, Aarti Gautam, Ramay Patra, K. Srinivasa Rao, K.V. Gobi and R. - Subasri; 9.1 Introduction 252; 9.2 Conclusions 278; 10 Implementation of Nanotechnology in Anticorrosion Material Development for Food Packaging 287; Aparna Ray Sarkar, Dwaipayan Sen and Pramita Sen; 10.1 Introduction 288; 10.2 Synthesis of Nanoclay-Based Composites for Food Packaging 288; 10.3 Metal Nanoparticle-Based Composites 294; 10.4 Synthesis of Biopolymer-Based Packaging Material 296; 10.5 Structural Features of Different Nanocomposites 298; 10.6 Application of Different Nanomaterials in Canned Food Packaging 307; 10.7 Concluding Remark 314; 11 Development and Characterization of Nanostructured Thin Films for Corrosion Control Applications 323; M. Geetha Devi, R. - Senthilkumar and Hebatallah Al Jabri; 11.1 Introduction 324; 11.2 Various Forms of Corrosion in the Petroleum Industry 326; 11.3 Corrosion's Effects on Various Equipment Used in the Petrochemical Industry 329; 11.4 Conventional Corrosion Control Techniques 333; 11.5 The Role of Nanotechnology in Corrosion Control 337; 11.6 Application of Nanocomposite Thin Films in Corrosion Control 340; 11.7 Results and Discussion 342; 11.8 Conclusion 346; 11.9 Future Scope 346; 11.10 Challenges 347; 12 Anticorrosion and Antifouling Coating Materials 353; N. Haridharan and R. V. Shiva Kumar; 12.1 Introduction 354; 12.2 Key Issues in the Formulation of Anticorrosive Materials 366; 12.3 Formulating a Good Model for Leaching 375; 12.4 The Advent of Nanotechnology 390; 12.5 Summary of the Current Developments 393; 12.6 Conclusion 396; 13 Metal(II) Complexes as Potential Anticorrosion and Antifouling Agents-A Review 399; Asha M. S., Zabiulla, Othbert Pinto, Arjun S. - R., Alen Eldose and Sangamesha M. A.; 13.1 Introduction 400; 13.2 Outline and Mechanism of Metal(II) Complexes as Corrosion Inhibitors 401; 13.3 Outline of Metal Complexes as Antifouling Agents 409; 13.4 Conclusion 415; 14 Thermodynamic Modeling of Carbonaceous Coating of Oxides and Sulfides Thin Films Grown by CVD for Enhancing Surface Quality 425; Kranthi Kumar Vaidyula, Sukanya Dhar, Anjali Lalithambika and S. A. Shivashankar; 14.1 Introduction 426; 14.2 Experimental 426; 14.3 Results and Discussion 428; 14.4 Conclusions 432; 15 Metal Nanoparticles: Biosynthesis Approach and Bio-Packaging Application 435; Priti Chaware, Amol Nande, J. D. Punde, K. G. Rewatkar and S. J. - Dhoble; 15.1 Introduction 436; 15.2 Synthesis of NPs 438; 15.3 Characterization of Nanoparticles 441; 15.4 Concluding Remarks 449; 16 Statistical Data Analysis of Anticorrosion and Antifouling: Unveiling Insights from Performance and Trends 459; Preetham Noel P., Kukatlapalli Pradeep Kumar, Mani Joseph P. and Vinay Jha Pillai; 16.1 Introduction 460; 16.2 Literature 460; 16.3 Results and Discussion 466; 16.4 Conclusion 471; 17 Comprehensive Data Analysis of Anticorrosion, Antifouling Agents, and the Efficiency of Corrosion Inhibitors in CO2 Pipelines 475; Vineeth Simhadri, Kukatlapalli Pradeep Kumar, Vijaya P. and Vinai George Biju; 17.1 Introduction 476; 17.2 Literature Review 477; 17.3 Results and Discussion 486; 17.4 Conclusion 494; References 495; Index 497 |
---|---|
Beschreibung: | 528 Seiten |
ISBN: | 9781394234288 |