Gödel Forever Through 90 Years of Foundational Claims

Gödel Forever takes a critical look at several foundation claims on Gödelian incompleteness that have appeared in the literature over the years, strictly adhering to mathematical details. Rephrasing the words from Torkel Franzén: Ken Williams presents a new book on Gödel's incompleteness theore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:English
Schlagworte:
Online-Zugang:DE-B1533
DE-860
DE-859
DE-1052
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV049844794
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 240902s2023 xx o|||| 00||| eng d
020 |a 9783838277868  |9 978-3-8382-7786-8 
024 7 |a 10.24216/9783838277868  |2 doi 
035 |a (ZDB-41-SEL)100865631 
035 |a (OCoLC)1454754669 
035 |a (DE-599)BVBBV049844794 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-B1533  |a DE-860  |a DE-859  |a DE-1052 
245 1 0 |a Gödel Forever  |b Through 90 Years of Foundational Claims  |c Ken Williams 
300 |a 1 Online-Ressource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 |a Gödel Forever takes a critical look at several foundation claims on Gödelian incompleteness that have appeared in the literature over the years, strictly adhering to mathematical details. Rephrasing the words from Torkel Franzén: Ken Williams presents a new book on Gödel's incompleteness theorem for a general audience since no existing book both explains the theorem from a mathematical point of view and reflects his experiences over the years of reading and commenting on references to the incompleteness theorem on the Internet. The range of critical review on the one hand and its elementary, if detailed, derivation of Gödel's Result (on which it is based) on the other makes Gödel Forever a must read for the serious study of the meaning and consequences of Gödel's Incompleteness 
650 4 |a Kurt Gödel 
650 4 |a Mathematik 
650 4 |a Mathematics 
650 4 |a Logik 
650 4 |a Logics 
700 1 |a Williams, Ken  |e Sonstige  |4 oth 
856 4 0 |u https://elibrary.utb.de/doi/book/10.24216/9783838277868  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-41-SEL 
943 1 |a oai:aleph.bib-bvb.de:BVB01-035184676 
966 e |u https://elibrary.utb.de/doi/book/10.24216/9783838277868  |l DE-B1533  |p ZDB-41-SEL  |q ASH_PDA_SEL  |x Verlag  |3 Volltext 
966 e |u https://elibrary.utb.de/doi/book/10.24216/9783838277868  |l DE-860  |p ZDB-41-SEL  |q FLA_PDA_SEL  |x Verlag  |3 Volltext 
966 e |u https://elibrary.utb.de/doi/book/10.24216/9783838277868  |l DE-859  |p ZDB-41-SEL  |q FKE_PDA_SEL  |x Verlag  |3 Volltext 
966 e |u https://elibrary.utb.de/doi/book/10.24216/9783838277868  |l DE-1052  |p ZDB-41-SEL  |q EFN_PDA_SEL  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819316645398577152
any_adam_object
building Verbundindex
bvnumber BV049844794
collection ZDB-41-SEL
ctrlnum (ZDB-41-SEL)100865631
(OCoLC)1454754669
(DE-599)BVBBV049844794
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02379nam a2200409zc 4500</leader><controlfield tag="001">BV049844794</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240902s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783838277868</subfield><subfield code="9">978-3-8382-7786-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.24216/9783838277868</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-41-SEL)100865631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1454754669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049844794</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-B1533</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-1052</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gödel Forever</subfield><subfield code="b">Through 90 Years of Foundational Claims</subfield><subfield code="c">Ken Williams</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Gödel Forever takes a critical look at several foundation claims on Gödelian incompleteness that have appeared in the literature over the years, strictly adhering to mathematical details. Rephrasing the words from Torkel Franzén: Ken Williams presents a new book on Gödel's incompleteness theorem for a general audience since no existing book both explains the theorem from a mathematical point of view and reflects his experiences over the years of reading and commenting on references to the incompleteness theorem on the Internet. The range of critical review on the one hand and its elementary, if detailed, derivation of Gödel's Result (on which it is based) on the other makes Gödel Forever a must read for the serious study of the meaning and consequences of Gödel's Incompleteness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kurt Gödel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, Ken</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://elibrary.utb.de/doi/book/10.24216/9783838277868</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-41-SEL</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035184676</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://elibrary.utb.de/doi/book/10.24216/9783838277868</subfield><subfield code="l">DE-B1533</subfield><subfield code="p">ZDB-41-SEL</subfield><subfield code="q">ASH_PDA_SEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://elibrary.utb.de/doi/book/10.24216/9783838277868</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-41-SEL</subfield><subfield code="q">FLA_PDA_SEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://elibrary.utb.de/doi/book/10.24216/9783838277868</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-41-SEL</subfield><subfield code="q">FKE_PDA_SEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://elibrary.utb.de/doi/book/10.24216/9783838277868</subfield><subfield code="l">DE-1052</subfield><subfield code="p">ZDB-41-SEL</subfield><subfield code="q">EFN_PDA_SEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV049844794
illustrated Not Illustrated
indexdate 2024-12-24T10:19:18Z
institution BVB
isbn 9783838277868
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-035184676
oclc_num 1454754669
open_access_boolean
owner DE-B1533
DE-860
DE-859
DE-1052
owner_facet DE-B1533
DE-860
DE-859
DE-1052
physical 1 Online-Ressource
psigel ZDB-41-SEL
ZDB-41-SEL ASH_PDA_SEL
ZDB-41-SEL FLA_PDA_SEL
ZDB-41-SEL FKE_PDA_SEL
ZDB-41-SEL EFN_PDA_SEL
publishDateSearch 2023
publishDateSort 2023
record_format marc
spelling Gödel Forever Through 90 Years of Foundational Claims Ken Williams
1 Online-Ressource
txt rdacontent
c rdamedia
cr rdacarrier
Gödel Forever takes a critical look at several foundation claims on Gödelian incompleteness that have appeared in the literature over the years, strictly adhering to mathematical details. Rephrasing the words from Torkel Franzén: Ken Williams presents a new book on Gödel's incompleteness theorem for a general audience since no existing book both explains the theorem from a mathematical point of view and reflects his experiences over the years of reading and commenting on references to the incompleteness theorem on the Internet. The range of critical review on the one hand and its elementary, if detailed, derivation of Gödel's Result (on which it is based) on the other makes Gödel Forever a must read for the serious study of the meaning and consequences of Gödel's Incompleteness
Kurt Gödel
Mathematik
Mathematics
Logik
Logics
Williams, Ken Sonstige oth
https://elibrary.utb.de/doi/book/10.24216/9783838277868 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Gödel Forever Through 90 Years of Foundational Claims
Kurt Gödel
Mathematik
Mathematics
Logik
Logics
title Gödel Forever Through 90 Years of Foundational Claims
title_auth Gödel Forever Through 90 Years of Foundational Claims
title_exact_search Gödel Forever Through 90 Years of Foundational Claims
title_full Gödel Forever Through 90 Years of Foundational Claims Ken Williams
title_fullStr Gödel Forever Through 90 Years of Foundational Claims Ken Williams
title_full_unstemmed Gödel Forever Through 90 Years of Foundational Claims Ken Williams
title_short Gödel Forever
title_sort godel forever through 90 years of foundational claims
title_sub Through 90 Years of Foundational Claims
topic Kurt Gödel
Mathematik
Mathematics
Logik
Logics
topic_facet Kurt Gödel
Mathematik
Mathematics
Logik
Logics
url https://elibrary.utb.de/doi/book/10.24216/9783838277868
work_keys_str_mv AT williamsken godelforeverthrough90yearsoffoundationalclaims