Generalized additive models for location, scale and shape a distributional regression approach, with applications

An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stasinopoulos, Mikis D. (VerfasserIn), Kneib, Thomas 1976- (VerfasserIn), Klein, Nadja 1987- (VerfasserIn), Mayr, Andreas 1983- (VerfasserIn), Heller, Gillian Z. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge, United Kingdom Cambridge University Press 2024
Schriftenreihe:Cambridge series in statistical and probabilistic mathematics 56
Schlagworte:
Online-Zugang:DE-12
DE-634
DE-92
DE-91
DE-473
DE-19
DE-945
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000 cb4500
001 BV049629394
003 DE-604
005 20240614
007 cr|uuu---uuuuu
008 240327s2024 |||| o||u| ||||||eng d
020 |a 9781009410076  |c ebook  |9 978-1-009-41007-6 
024 7 |a 10.1017/9781009410076  |2 doi 
035 |a (ZDB-20-CBO)CR9781009410076 
035 |a (OCoLC)1429571832 
035 |a (DE-599)KEP101217358 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-19  |a DE-91  |a DE-945  |a DE-12  |a DE-92  |a DE-634  |a DE-473 
082 0 |a 519.5/36  |2 23 
100 1 |a Stasinopoulos, Mikis D.  |e Verfasser  |0 (DE-588)1200420330  |4 aut 
245 1 0 |a Generalized additive models for location, scale and shape  |b a distributional regression approach, with applications  |c Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller 
264 1 |a Cambridge, United Kingdom  |b Cambridge University Press  |c 2024 
264 4 |c © 2024 
300 |a 1 Online-Ressource (xx, 285 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Cambridge series in statistical and probabilistic mathematics  |v 56 
520 3 |a An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study. 
653 0 |a Regression analysis / Mathematical models 
653 0 |a Theory of distributions (Functional analysis) 
700 1 |a Kneib, Thomas  |d 1976-  |e Verfasser  |0 (DE-588)131555332  |4 aut 
700 1 |a Klein, Nadja  |d 1987-  |e Verfasser  |0 (DE-588)1035481014  |4 aut 
700 1 |a Mayr, Andreas  |d 1983-  |e Verfasser  |0 (DE-588)1323832335  |4 aut 
700 1 |a Heller, Gillian Z.  |e Verfasser  |0 (DE-588)1310631409  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe, Hardcover  |z 978-1-009-41006-9 
830 0 |a Cambridge series in statistical and probabilistic mathematics  |v 56  |w (DE-604)BV041460443  |9 56 
856 4 0 |u https://doi.org/10.1017/9781009410076  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO  |a ZDB-20-CEC 
940 1 |q ZDB-20-CEC24 
966 e |u https://doi.org/10.1017/9781009410076  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781009410076  |l DE-634  |p ZDB-20-CBO  |q BTU_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781009410076  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781009410076  |l DE-91  |p ZDB-20-CEC  |q TUM_Paketkauf_2024  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781009410076  |l DE-473  |p ZDB-20-CBO  |q UBG_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781009410076  |l DE-19  |p ZDB-20-CBO  |q UBM_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781009410076  |l DE-945  |p ZDB-20-CEC  |q ZDB-20-CEC24  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-UBG_katkey 197255215
DE-BY-UBG_local_url https://doi.org/10.1017/9781009410076
Verlag
_version_ 1816347490112241664
adam_text
adam_txt
any_adam_object
any_adam_object_boolean
author Stasinopoulos, Mikis D.
Kneib, Thomas 1976-
Klein, Nadja 1987-
Mayr, Andreas 1983-
Heller, Gillian Z.
author_GND (DE-588)1200420330
(DE-588)131555332
(DE-588)1035481014
(DE-588)1323832335
(DE-588)1310631409
author_facet Stasinopoulos, Mikis D.
Kneib, Thomas 1976-
Klein, Nadja 1987-
Mayr, Andreas 1983-
Heller, Gillian Z.
author_role aut
aut
aut
aut
aut
author_sort Stasinopoulos, Mikis D.
author_variant m d s md mds
t k tk
n k nk
a m am
g z h gz gzh
building Verbundindex
bvnumber BV049629394
collection ZDB-20-CBO
ZDB-20-CEC
ctrlnum (ZDB-20-CBO)CR9781009410076
(OCoLC)1429571832
(DE-599)KEP101217358
dewey-full 519.5/36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5/36
dewey-search 519.5/36
dewey-sort 3519.5 236
dewey-tens 510 - Mathematics
discipline Mathematik
discipline_str_mv Mathematik
doi_str_mv 10.1017/9781009410076
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 cb4500</leader><controlfield tag="001">BV049629394</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240614</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240327s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009410076</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-009-41007-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009410076</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009410076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1429571832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP101217358</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/36</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stasinopoulos, Mikis D.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1200420330</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized additive models for location, scale and shape</subfield><subfield code="b">a distributional regression approach, with applications</subfield><subfield code="c">Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 285 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge series in statistical and probabilistic mathematics</subfield><subfield code="v">56</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Regression analysis / Mathematical models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Theory of distributions (Functional analysis)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kneib, Thomas</subfield><subfield code="d">1976-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131555332</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klein, Nadja</subfield><subfield code="d">1987-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1035481014</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mayr, Andreas</subfield><subfield code="d">1983-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1323832335</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heller, Gillian Z.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1310631409</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-009-41006-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge series in statistical and probabilistic mathematics</subfield><subfield code="v">56</subfield><subfield code="w">(DE-604)BV041460443</subfield><subfield code="9">56</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009410076</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield><subfield code="a">ZDB-20-CEC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-20-CEC24</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009410076</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009410076</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009410076</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009410076</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CEC</subfield><subfield code="q">TUM_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009410076</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009410076</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009410076</subfield><subfield code="l">DE-945</subfield><subfield code="p">ZDB-20-CEC</subfield><subfield code="q">ZDB-20-CEC24</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV049629394
illustrated Not Illustrated
index_date 2024-09-19T15:57:26Z
indexdate 2024-11-21T16:45:44Z
institution BVB
isbn 9781009410076
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034973254
oclc_num 1429571832
open_access_boolean
owner DE-19
DE-BY-UBM
DE-91
DE-BY-TUM
DE-945
DE-12
DE-92
DE-634
DE-473
DE-BY-UBG
owner_facet DE-19
DE-BY-UBM
DE-91
DE-BY-TUM
DE-945
DE-12
DE-92
DE-634
DE-473
DE-BY-UBG
physical 1 Online-Ressource (xx, 285 Seiten)
psigel ZDB-20-CBO
ZDB-20-CEC
ZDB-20-CEC24
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO BTU_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
ZDB-20-CEC TUM_Paketkauf_2024
ZDB-20-CBO UBG_PDA_CBO
ZDB-20-CBO UBM_PDA_CBO
ZDB-20-CEC ZDB-20-CEC24
publishDate 2024
publishDateSearch 2024
publishDateSort 2024
publisher Cambridge University Press
record_format marc
series Cambridge series in statistical and probabilistic mathematics
series2 Cambridge series in statistical and probabilistic mathematics
spellingShingle Stasinopoulos, Mikis D.
Kneib, Thomas 1976-
Klein, Nadja 1987-
Mayr, Andreas 1983-
Heller, Gillian Z.
Generalized additive models for location, scale and shape a distributional regression approach, with applications
Cambridge series in statistical and probabilistic mathematics
title Generalized additive models for location, scale and shape a distributional regression approach, with applications
title_auth Generalized additive models for location, scale and shape a distributional regression approach, with applications
title_exact_search Generalized additive models for location, scale and shape a distributional regression approach, with applications
title_exact_search_txtP Generalized additive models for location, scale and shape a distributional regression approach, with applications
title_full Generalized additive models for location, scale and shape a distributional regression approach, with applications Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller
title_fullStr Generalized additive models for location, scale and shape a distributional regression approach, with applications Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller
title_full_unstemmed Generalized additive models for location, scale and shape a distributional regression approach, with applications Mikis D. Stasinopoulos, Thomas Kneib, Nadja Klein, Andreas Mayr, Gillian Z. Heller
title_short Generalized additive models for location, scale and shape
title_sort generalized additive models for location scale and shape a distributional regression approach with applications
title_sub a distributional regression approach, with applications
url https://doi.org/10.1017/9781009410076
volume_link (DE-604)BV041460443
work_keys_str_mv AT stasinopoulosmikisd generalizedadditivemodelsforlocationscaleandshapeadistributionalregressionapproachwithapplications
AT kneibthomas generalizedadditivemodelsforlocationscaleandshapeadistributionalregressionapproachwithapplications
AT kleinnadja generalizedadditivemodelsforlocationscaleandshapeadistributionalregressionapproachwithapplications
AT mayrandreas generalizedadditivemodelsforlocationscaleandshapeadistributionalregressionapproachwithapplications
AT hellergillianz generalizedadditivemodelsforlocationscaleandshapeadistributionalregressionapproachwithapplications