Maurer-Cartan methods in deformation theory the twisting procedure

Covering an exceptional range of topics, this text provides a unique overview of the Maurer—Cartan methods in algebra, geometry, topology, and mathematical physics. It offers a new conceptual treatment of the twisting procedure, guiding the reader through various versions with the help of plentiful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dotsenko, Vladimir 1981- (VerfasserIn), Shadrin, Sergey 1980- (VerfasserIn), Vallette, Bruno (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2024
Schriftenreihe:London Mathematical Society lecture note series 488
Schlagworte:
Online-Zugang:BSB01
BTU01
FHN01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covering an exceptional range of topics, this text provides a unique overview of the Maurer—Cartan methods in algebra, geometry, topology, and mathematical physics. It offers a new conceptual treatment of the twisting procedure, guiding the reader through various versions with the help of plentiful motivating examples for graduate students as well as researchers. Topics covered include a novel approach to the twisting procedure for operads leading to Kontsevich graph homology and a description of the twisting procedure for (homotopy) associative algebras or (homotopy) Lie algebras using the biggest deformation gauge group ever considered. The book concludes with concise surveys of recent applications in areas including higher category theory and deformation theory
Beschreibung:Title from publisher's bibliographic system (viewed on 22 Aug 2023)
Maurer-Cartan methods -- Operad theory for filtered and complete modules -- Pre-Lie algebras and the gauge group -- The gauge origin of the twisting procedure -- The twisting procedure for operads -- Operadic twisting and graph homology -- Applications
Beschreibung:1 Online-Ressource (viii, 177 Seiten)
ISBN:9781108963800
DOI:10.1017/9781108963800