Causal inference

"Causality is central to the understanding and use of data; without an understanding of cause and effect relationships, we cannot use data to answer important questions in medicine and many other fields"--

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rosenbaum, Paul R. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge, Massachusetts ; London, England The MIT Press [2023]
Schriftenreihe:The MIT Press essential knowledge series
Schlagworte:
Online-Zugang:DE-573
URL des Erstveröffentlichers
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • The effects caused by treatments
  • Randomized experiments
  • Observational studies : the problem
  • Adjustments for measured covariates
  • Sensitivity to unmeasured covariates
  • Quasi-experimental devices in the design of observational studies
  • Natural experiments, discontinuities, and instruments
  • Replication, resolution and evidence factors
  • Uncertainty and complexity in causal inference
  • Postscript: Key ideas, chapter by chapter