Artificial Intelligence and Credit Risk The Use of Alternative Data and Methods in Internal Credit Rating

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Locatelli, Rossella (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cham Springer International Publishing AG 2022
Ausgabe:1st ed
Schlagworte:
Online-Zugang:DE-2070s
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Intro
  • About This Book
  • Executive Summary (English)
  • Contents
  • About the Authors
  • List of Figures
  • List of Tables
  • 1 Introduction
  • 2 How AI Models Are Built
  • 2.1 Processing of Unstructured Data in AI Models
  • 2.1.1 The Main Structuring Techniques for "Unstructured" Data Are Text Analysis and Natural Language Processing
  • 2.1.2 What Does "Alternative Credit Data" Mean?
  • 2.2 Stand-Alone AI Models
  • 2.2.1 Decision Trees
  • 2.2.2 Random Forests
  • 2.2.3 Gradient Boosting
  • 2.2.4 Neural Networks
  • 2.2.5 Autoencoder, a Special Type of Neural Network
  • References
  • 3 AI Tools in Credit Risk
  • 3.1 Use of Alternative Techniques and Data in Probability of Default Models
  • 3.1.1 The Type of Data Analysed and How They Are Managed
  • 3.1.2 The Interpretability of Results: An Important Factor
  • 3.1.3 A Practical Case: Risk Discrimination for Borrowers with Seasonal Businesses
  • 3.1.4 A Practical Case: Identification of Counterparty Risk During the COVID-19 Crisis
  • 3.1.5 A Practical Case: Early Warnings
  • 3.1.6 A Practical Case: Advanced Analytics in Loan Approval
  • 3.2 How to Improve Traditional Models Using AI Techniques
  • 3.2.1 A Practical Application: The Two-Step Approach
  • 3.2.2 The Estimation Methodology Adopted
  • 3.3 Applying an AI Model to Asset Management
  • 3.4 Use of AI Models for the Validation/Benchmarking of Traditional Models
  • 3.4.1 ML Techniques for Benchmarking Capital Requirements Models
  • 3.4.2 Initial Applications for Management Purposes
  • References
  • 4 The Validation of AI Techniques
  • 4.1 Possible Comparison Criteria Between Traditional Models and AI Models
  • 4.1.1 Principle 1: Accuracy
  • 4.1.2 Principle 2: Robustness
  • 4.1.3 Principle 3: Fairness
  • 4.1.4 Principle 4: Efficiency
  • 4.1.5 Principle 5: Explainability
  • 4.2 Interpretability and Stability of the Models' Outcomes
  • 4.2.1 Main Legislation
  • 4.2.2 Interpretability Methodological Notes
  • 4.2.3 Key Methodologies
  • 4.2.4 Focus Points
  • 4.2.5 Stability Methodological Notes
  • References
  • 5 Possible Evolutions in AI Models
  • 5.1 The Role of AI Models in the Credit Risk of Tomorrow
  • 5.2 Ethics and Transparency of Results
  • 5.2.1 Privacy
  • 5.2.2 Transparency
  • 5.2.3 Discrimination
  • 5.2.4 Inclusion
  • References
  • Appendix
  • Glossary
  • Bibliography
  • Index