Learning data mining with Python use Python to manipulate data and build predictive models

Cover -- Copyright -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the Jupyter Notebook -- Installing Python -- Installing Jupyt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Layton, Robert (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham Packt Publishing 2017
Ausgabe:Second edition
Schlagworte:
Online-Zugang:BTW01
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a22000001c 4500
001 BV049383492
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 231026s2017 |||| o||u| ||||||eng d
020 |a 9781787129566  |c ebook  |9 978-1-78712-956-6 
035 |a (OCoLC)1409115637 
035 |a (DE-599)KEP014924765 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-526 
082 0 |a 5.133 
084 |a ST 250  |0 (DE-625)143626:  |2 rvk 
100 1 |a Layton, Robert  |e Verfasser  |4 aut 
245 1 0 |a Learning data mining with Python  |b use Python to manipulate data and build predictive models  |c Robert Layton 
250 |a Second edition 
264 1 |a Birmingham  |b Packt Publishing  |c 2017 
300 |a 1 online resource (348 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 3 |a Cover -- Copyright -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the Jupyter Notebook -- Installing Python -- Installing Jupyter Notebook -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Downloading the example code -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example -- What is classification? -- Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn Estimators -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing -- Standard pre-processing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees -- Loading the dataset -- Collecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Setting parameters in Random Forests -- Applying random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Overall methodology -- Dealing with the movie recommendation problem -- Obtaining the dataset -- Loading with pandas -- Sparse data formats -- Understanding the Apriori algorithm and its implementation. 
650 0 7 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |2 gnd  |9 rswk-swf 
653 0 |a Python (Computer program language) 
653 0 |a Python (Computer program language) 
653 0 |a Electronic books 
689 0 0 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |D s 
689 0 |5 DE-604 
856 4 0 |m X:EBC  |u https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=4851656  |x Verlag  |3 Volltext 
912 |a ZDB-30-PQE 
999 |a oai:aleph.bib-bvb.de:BVB01-034711063 
966 e |u https://ebookcentral.proquest.com/lib/th-wildau/detail.action?docID=4851656  |l BTW01  |p ZDB-30-PQE  |q BTW_PDA_PQE_KAUF  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1804186087297384448
adam_txt
any_adam_object
any_adam_object_boolean
author Layton, Robert
author_facet Layton, Robert
author_role aut
author_sort Layton, Robert
author_variant r l rl
building Verbundindex
bvnumber BV049383492
classification_rvk ST 250
collection ZDB-30-PQE
ctrlnum (OCoLC)1409115637
(DE-599)KEP014924765
dewey-full 5.133
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 5.133
dewey-search 5.133
dewey-sort 15.133
dewey-tens 000 - Computer science, information, general works
discipline Informatik
discipline_str_mv Informatik
edition Second edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03364nmm a22004091c 4500</leader><controlfield tag="001">BV049383492</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231026s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781787129566</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-78712-956-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1409115637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP014924765</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-526</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">5.133</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Layton, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning data mining with Python</subfield><subfield code="b">use Python to manipulate data and build predictive models</subfield><subfield code="c">Robert Layton</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (348 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- Copyright -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the Jupyter Notebook -- Installing Python -- Installing Jupyter Notebook -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Downloading the example code -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example -- What is classification? -- Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn Estimators -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing -- Standard pre-processing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees -- Loading the dataset -- Collecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Setting parameters in Random Forests -- Applying random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Overall methodology -- Dealing with the movie recommendation problem -- Obtaining the dataset -- Loading with pandas -- Sparse data formats -- Understanding the Apriori algorithm and its implementation.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="m">X:EBC</subfield><subfield code="u">https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=4851656</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034711063</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-wildau/detail.action?docID=4851656</subfield><subfield code="l">BTW01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">BTW_PDA_PQE_KAUF</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV049383492
illustrated Not Illustrated
index_date 2024-07-03T22:59:36Z
indexdate 2024-07-10T10:05:33Z
institution BVB
isbn 9781787129566
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034711063
oclc_num 1409115637
open_access_boolean
owner DE-526
owner_facet DE-526
physical 1 online resource (348 pages)
psigel ZDB-30-PQE
ZDB-30-PQE BTW_PDA_PQE_KAUF
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Packt Publishing
record_format marc
spelling Layton, Robert Verfasser aut
Learning data mining with Python use Python to manipulate data and build predictive models Robert Layton
Second edition
Birmingham Packt Publishing 2017
1 online resource (348 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Cover -- Copyright -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Getting Started with Data Mining -- Introducing data mining -- Using Python and the Jupyter Notebook -- Installing Python -- Installing Jupyter Notebook -- Installing scikit-learn -- A simple affinity analysis example -- What is affinity analysis? -- Product recommendations -- Loading the dataset with NumPy -- Downloading the example code -- Implementing a simple ranking of rules -- Ranking to find the best rules -- A simple classification example -- What is classification? -- Loading and preparing the dataset -- Implementing the OneR algorithm -- Testing the algorithm -- Summary -- Chapter 2: Classifying with scikit-learn Estimators -- scikit-learn estimators -- Nearest neighbors -- Distance metrics -- Loading the dataset -- Moving towards a standard workflow -- Running the algorithm -- Setting parameters -- Preprocessing -- Standard pre-processing -- Putting it all together -- Pipelines -- Summary -- Chapter 3: Predicting Sports Winners with Decision Trees -- Loading the dataset -- Collecting the data -- Using pandas to load the dataset -- Cleaning up the dataset -- Extracting new features -- Decision trees -- Parameters in decision trees -- Using decision trees -- Sports outcome prediction -- Putting it all together -- Random forests -- How do ensembles work? -- Setting parameters in Random Forests -- Applying random forests -- Engineering new features -- Summary -- Chapter 4: Recommending Movies Using Affinity Analysis -- Affinity analysis -- Algorithms for affinity analysis -- Overall methodology -- Dealing with the movie recommendation problem -- Obtaining the dataset -- Loading with pandas -- Sparse data formats -- Understanding the Apriori algorithm and its implementation.
Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf
Python (Computer program language)
Electronic books
Python Programmiersprache (DE-588)4434275-5 s
DE-604
X:EBC https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=4851656 Verlag Volltext
spellingShingle Layton, Robert
Learning data mining with Python use Python to manipulate data and build predictive models
Python Programmiersprache (DE-588)4434275-5 gnd
subject_GND (DE-588)4434275-5
title Learning data mining with Python use Python to manipulate data and build predictive models
title_auth Learning data mining with Python use Python to manipulate data and build predictive models
title_exact_search Learning data mining with Python use Python to manipulate data and build predictive models
title_exact_search_txtP Learning data mining with Python use Python to manipulate data and build predictive models
title_full Learning data mining with Python use Python to manipulate data and build predictive models Robert Layton
title_fullStr Learning data mining with Python use Python to manipulate data and build predictive models Robert Layton
title_full_unstemmed Learning data mining with Python use Python to manipulate data and build predictive models Robert Layton
title_short Learning data mining with Python
title_sort learning data mining with python use python to manipulate data and build predictive models
title_sub use Python to manipulate data and build predictive models
topic Python Programmiersprache (DE-588)4434275-5 gnd
topic_facet Python Programmiersprache
url https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=4851656
work_keys_str_mv AT laytonrobert learningdataminingwithpythonusepythontomanipulatedataandbuildpredictivemodels