Practicing Trustworthy Machine Learning consistent, transparent, and fair AI pipelines

With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pruksachatkun, Yada (VerfasserIn), McAteer, Matthew (VerfasserIn), Majumdar, Subhabrata (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo O'Reilly Media, Inc. ©2023
Ausgabe:1st edition
Schlagworte:
Online-Zugang:UER01
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable.
Beschreibung:1 online resource (xxiv, 274 pages) Illustrations
ISBN:9781098120245