Practicing Trustworthy Machine Learning consistent, transparent, and fair AI pipelines
With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and m...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Beijing ; Boston ; Farnham ; Sebastopol ; Tokyo
O'Reilly Media, Inc.
©2023
|
Ausgabe: | 1st edition |
Schlagworte: | |
Online-Zugang: | UER01 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable. |
---|---|
Beschreibung: | 1 online resource (xxiv, 274 pages) Illustrations |
ISBN: | 9781098120245 |