Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making

Amid noticeable improvements and achievements in the reproductive, maternal, neonatal, child health, and nutrition landscape in Bangladesh, existing evidence suggests that further accelerated progress hinges on strategic investment decision making. Addressing the top service utilization determinants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gopalan, Saji (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Washington, D.C The World Bank 2021
Schlagworte:
Online-Zugang:kostenfrei
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000001c 4500
001 BV049080971
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 230731s2021 xxu o|||| 00||| eng d
024 7 |a 10.1596/1813-9450-9783  |2 doi 
035 |a (ZDB-1-WBA)071024980 
035 |a (OCoLC)1392141656 
035 |a (DE-599)KEP071024980 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxu  |c XD-US 
049 |a DE-12  |a DE-521  |a DE-573  |a DE-523  |a DE-Re13  |a DE-19  |a DE-355  |a DE-703  |a DE-91  |a DE-706  |a DE-29  |a DE-M347  |a DE-473  |a DE-824  |a DE-20  |a DE-739  |a DE-1043  |a DE-863  |a DE-862 
100 1 |a Gopalan, Saji  |e Verfasser  |4 aut 
245 1 0 |a Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh  |b A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making  |c Saji Gopalan 
264 1 |a Washington, D.C  |b The World Bank  |c 2021 
300 |a 1 Online-Ressource (34 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 3 |a Amid noticeable improvements and achievements in the reproductive, maternal, neonatal, child health, and nutrition landscape in Bangladesh, existing evidence suggests that further accelerated progress hinges on strategic investment decision making. Addressing the top service utilization determinants that are both context- and time-specific is one cost-effective way of improving the unmet reproductive, maternal, neonatal, child health, and nutrition outcomes in a short timeframe. Against this backdrop, using machine learning analysis, the overall aim of this study was to help Bangladesh identify priority investment areas that could accelerate reproductive, maternal, neonatal, child health, and nutrition utilization, quality, and outcomes over the short run, by comparing the relative importance of demand- and-supply-side determinants of key reproductive, maternal, neonatal, child health, and nutrition indicators over the past decade (across two time points). Two rounds of the Bangladesh Health Facility Survey and the Demographic and Health Survey (2014 and 2017) were analyzed. The findings indicate that the relative importance of the demand-side determinants (except wealth and education status) have recently declined. Conversely, investments in key supply-side determinants (for example, availability of skilled staff, readiness for care, and quality of care) could provide a thrust toward further increases in utilization. Immediate attention is needed to address the regressive role of wealth status on utilization through, for example, demand-side financing that goes beyond user fee exemptions. Further, developing strategies to improve the engagement of community health workers in reproductive, maternal, neonatal, child health, and nutrition utilization and tapping into the potential of mobile health technology to support community health workers' performance and women's awareness could help to boost utilization patterns 
650 4 |a Child Health 
650 4 |a Early Child and Children's Health 
650 4 |a Family Planning 
650 4 |a Health Care Quality 
650 4 |a Health Indicators 
650 4 |a Health Policy and Management 
650 4 |a Health, Nutrition and Population 
650 4 |a Investment Decisions 
650 4 |a Machine Learning 
650 4 |a Maternal Health 
650 4 |a Nutrition 
650 4 |a Reproductive Health 
650 4 |a Utilization Determinants 
700 1 |a Mohammed-Roberts, Rianna  |e Sonstige  |4 oth 
700 1 |a Zanetti Matarazzo, Hellen Chrystine  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1596/1813-9450-9783  |x Verlag  |z kostenfrei  |3 Volltext 
912 |a ZDB-1-WBA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-034342861 

Datensatz im Suchindex

DE-BY-UBM_katkey 6682623
_version_ 1823049478538526720
any_adam_object
author Gopalan, Saji
author_facet Gopalan, Saji
author_role aut
author_sort Gopalan, Saji
author_variant s g sg
building Verbundindex
bvnumber BV049080971
collection ZDB-1-WBA
ctrlnum (ZDB-1-WBA)071024980
(OCoLC)1392141656
(DE-599)KEP071024980
discipline Wirtschaftswissenschaften
doi_str_mv 10.1596/1813-9450-9783
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03769nam a22004931c 4500</leader><controlfield tag="001">BV049080971</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2021 xxu o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9783</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)071024980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392141656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP071024980</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gopalan, Saji</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh</subfield><subfield code="b">A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making</subfield><subfield code="c">Saji Gopalan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (34 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Amid noticeable improvements and achievements in the reproductive, maternal, neonatal, child health, and nutrition landscape in Bangladesh, existing evidence suggests that further accelerated progress hinges on strategic investment decision making. Addressing the top service utilization determinants that are both context- and time-specific is one cost-effective way of improving the unmet reproductive, maternal, neonatal, child health, and nutrition outcomes in a short timeframe. Against this backdrop, using machine learning analysis, the overall aim of this study was to help Bangladesh identify priority investment areas that could accelerate reproductive, maternal, neonatal, child health, and nutrition utilization, quality, and outcomes over the short run, by comparing the relative importance of demand- and-supply-side determinants of key reproductive, maternal, neonatal, child health, and nutrition indicators over the past decade (across two time points). Two rounds of the Bangladesh Health Facility Survey and the Demographic and Health Survey (2014 and 2017) were analyzed. The findings indicate that the relative importance of the demand-side determinants (except wealth and education status) have recently declined. Conversely, investments in key supply-side determinants (for example, availability of skilled staff, readiness for care, and quality of care) could provide a thrust toward further increases in utilization. Immediate attention is needed to address the regressive role of wealth status on utilization through, for example, demand-side financing that goes beyond user fee exemptions. Further, developing strategies to improve the engagement of community health workers in reproductive, maternal, neonatal, child health, and nutrition utilization and tapping into the potential of mobile health technology to support community health workers' performance and women's awareness could help to boost utilization patterns</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Child Health</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Early Child and Children's Health</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Family Planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health Care Quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health Indicators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health Policy and Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health, Nutrition and Population</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Investment Decisions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maternal Health</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reproductive Health</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Utilization Determinants</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohammed-Roberts, Rianna</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zanetti Matarazzo, Hellen Chrystine</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9783</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034342861</subfield></datafield></record></collection>
id DE-604.BV049080971
illustrated Not Illustrated
indexdate 2025-02-03T15:58:23Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034342861
oclc_num 1392141656
open_access_boolean 1
owner DE-12
DE-521
DE-573
DE-523
DE-Re13
DE-BY-UBR
DE-19
DE-BY-UBM
DE-355
DE-BY-UBR
DE-703
DE-91
DE-BY-TUM
DE-706
DE-29
DE-M347
DE-473
DE-BY-UBG
DE-824
DE-20
DE-739
DE-1043
DE-863
DE-BY-FWS
DE-862
DE-BY-FWS
owner_facet DE-12
DE-521
DE-573
DE-523
DE-Re13
DE-BY-UBR
DE-19
DE-BY-UBM
DE-355
DE-BY-UBR
DE-703
DE-91
DE-BY-TUM
DE-706
DE-29
DE-M347
DE-473
DE-BY-UBG
DE-824
DE-20
DE-739
DE-1043
DE-863
DE-BY-FWS
DE-862
DE-BY-FWS
physical 1 Online-Ressource (34 Seiten)
psigel ZDB-1-WBA
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher The World Bank
record_format marc
spellingShingle Gopalan, Saji
Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making
Child Health
Early Child and Children's Health
Family Planning
Health Care Quality
Health Indicators
Health Policy and Management
Health, Nutrition and Population
Investment Decisions
Machine Learning
Maternal Health
Nutrition
Reproductive Health
Utilization Determinants
title Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making
title_auth Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making
title_exact_search Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making
title_full Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making Saji Gopalan
title_fullStr Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making Saji Gopalan
title_full_unstemmed Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making Saji Gopalan
title_short Drivers of Utilization, Quality of Care, and RMNCH-N Services in Bangladesh
title_sort drivers of utilization quality of care and rmnch n services in bangladesh a comparative analysis of demand and supply side determinants using machine learning for investment decision making
title_sub A Comparative Analysis of Demand and Supply-Side Determinants using Machine Learning for Investment Decision-Making
topic Child Health
Early Child and Children's Health
Family Planning
Health Care Quality
Health Indicators
Health Policy and Management
Health, Nutrition and Population
Investment Decisions
Machine Learning
Maternal Health
Nutrition
Reproductive Health
Utilization Determinants
topic_facet Child Health
Early Child and Children's Health
Family Planning
Health Care Quality
Health Indicators
Health Policy and Management
Health, Nutrition and Population
Investment Decisions
Machine Learning
Maternal Health
Nutrition
Reproductive Health
Utilization Determinants
url https://doi.org/10.1596/1813-9450-9783
work_keys_str_mv AT gopalansaji driversofutilizationqualityofcareandrmnchnservicesinbangladeshacomparativeanalysisofdemandandsupplysidedeterminantsusingmachinelearningforinvestmentdecisionmaking
AT mohammedrobertsrianna driversofutilizationqualityofcareandrmnchnservicesinbangladeshacomparativeanalysisofdemandandsupplysidedeterminantsusingmachinelearningforinvestmentdecisionmaking
AT zanettimatarazzohellenchrystine driversofutilizationqualityofcareandrmnchnservicesinbangladeshacomparativeanalysisofdemandandsupplysidedeterminantsusingmachinelearningforinvestmentdecisionmaking