Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World

This study investigates whether Twitter data can be used to infer attitudes towards COVID-19 vaccination with an application to the Arabic speaking world. At first glance, anti-vaccine sentiment estimated from Twitter data is surprisingly low in comparison to estimates obtained from survey data. Onl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Van Der Weide, Roy (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Washington, D.C The World Bank 2022
Schlagworte:
Online-Zugang:kostenfrei
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000001c 4500
001 BV049079788
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 230731s2022 xxu o|||| 00||| eng d
024 7 |a 10.1596/1813-9450-10165  |2 doi 
035 |a (ZDB-1-WBA)082393044 
035 |a (OCoLC)1392149728 
035 |a (DE-599)KEP082393044 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxu  |c XD-US 
049 |a DE-12  |a DE-521  |a DE-573  |a DE-523  |a DE-Re13  |a DE-19  |a DE-355  |a DE-703  |a DE-91  |a DE-706  |a DE-29  |a DE-M347  |a DE-473  |a DE-824  |a DE-20  |a DE-739  |a DE-1043  |a DE-863  |a DE-862 
100 1 |a Van Der Weide, Roy  |e Verfasser  |4 aut 
245 1 0 |a Inferring COVID-19 Vaccine Attitudes from Twitter Data  |b An Application to the Arabic Speaking World  |c Roy Van Der Weide 
264 1 |a Washington, D.C  |b The World Bank  |c 2022 
300 |a 1 Online-Ressource (20 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 3 |a This study investigates whether Twitter data can be used to infer attitudes towards COVID-19 vaccination with an application to the Arabic speaking world. At first glance, anti-vaccine sentiment estimated from Twitter data is surprisingly low in comparison to estimates obtained from survey data. Only about 3 percent of Twitter accounts in our database are identified as anti-COVID-vaccination (compared to 20 to 30 percent of survey respondents). This bias is resolved when: (1) filtering out accounts belonging to organizations that make up a significant share of the discourse on Twitter, and (2) adjusting for the fact that the population of Twitter users is biased towards more educated individuals. The most effective messages on the anti-vaccine side highlight claims that the vaccine causes serious life-threatening side effects. In the pro-vaccine camp, tweets containing content showing public figures receiving the vaccine are found to have the largest reach by far 
650 4 |a Anti-Vaccine Social Media 
650 4 |a Arabic Twitter 
650 4 |a Communicable Diseases 
650 4 |a Covid Vaccine Side Effect Attitudes 
650 4 |a COVID-19 Pandemic 
650 4 |a Disease Control and Prevention 
650 4 |a Health Behavior 
650 4 |a Health, Nutrition and Population 
650 4 |a Immunizations 
650 4 |a Pharmaceuticals and Pharmacoeconomics 
650 4 |a Positive Vaccine Messaging 
650 4 |a Public Health Promotion 
650 4 |a Public Health Survey 
650 4 |a Sentiment Data 
650 4 |a Social Media Vaccine Endorsements 
650 4 |a Vaccine Sentiment 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Van Der Weide, Roy  |t Inferring COVID-19 Vaccine Attitudes from Twitter Data: An Application to the Arabic Speaking World  |d Washington, D.C. : The World Bank, 2022 
856 4 0 |u https://doi.org/10.1596/1813-9450-10165  |x Verlag  |z kostenfrei  |3 Volltext 
912 |a ZDB-1-WBA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-034341679 

Datensatz im Suchindex

DE-BY-UBM_katkey 6681443
DE-BY-UBR_katkey 6729950
_version_ 1823049477358878720
any_adam_object
author Van Der Weide, Roy
author_facet Van Der Weide, Roy
author_role aut
author_sort Van Der Weide, Roy
author_variant d w r v dwr dwrv
building Verbundindex
bvnumber BV049079788
collection ZDB-1-WBA
ctrlnum (ZDB-1-WBA)082393044
(OCoLC)1392149728
(DE-599)KEP082393044
discipline Wirtschaftswissenschaften
doi_str_mv 10.1596/1813-9450-10165
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02969nam a22005171c 4500</leader><controlfield tag="001">BV049079788</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2022 xxu o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-10165</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)082393044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392149728</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP082393044</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Der Weide, Roy</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inferring COVID-19 Vaccine Attitudes from Twitter Data</subfield><subfield code="b">An Application to the Arabic Speaking World</subfield><subfield code="c">Roy Van Der Weide</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (20 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This study investigates whether Twitter data can be used to infer attitudes towards COVID-19 vaccination with an application to the Arabic speaking world. At first glance, anti-vaccine sentiment estimated from Twitter data is surprisingly low in comparison to estimates obtained from survey data. Only about 3 percent of Twitter accounts in our database are identified as anti-COVID-vaccination (compared to 20 to 30 percent of survey respondents). This bias is resolved when: (1) filtering out accounts belonging to organizations that make up a significant share of the discourse on Twitter, and (2) adjusting for the fact that the population of Twitter users is biased towards more educated individuals. The most effective messages on the anti-vaccine side highlight claims that the vaccine causes serious life-threatening side effects. In the pro-vaccine camp, tweets containing content showing public figures receiving the vaccine are found to have the largest reach by far</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-Vaccine Social Media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabic Twitter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communicable Diseases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Covid Vaccine Side Effect Attitudes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19 Pandemic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disease Control and Prevention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health Behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health, Nutrition and Population</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immunizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pharmaceuticals and Pharmacoeconomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Vaccine Messaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Public Health Promotion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Public Health Survey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social Media Vaccine Endorsements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vaccine Sentiment</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Van Der Weide, Roy</subfield><subfield code="t">Inferring COVID-19 Vaccine Attitudes from Twitter Data: An Application to the Arabic Speaking World</subfield><subfield code="d">Washington, D.C. : The World Bank, 2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-10165</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034341679</subfield></datafield></record></collection>
id DE-604.BV049079788
illustrated Not Illustrated
indexdate 2025-02-03T15:58:23Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034341679
oclc_num 1392149728
open_access_boolean 1
owner DE-12
DE-521
DE-573
DE-523
DE-Re13
DE-BY-UBR
DE-19
DE-BY-UBM
DE-355
DE-BY-UBR
DE-703
DE-91
DE-BY-TUM
DE-706
DE-29
DE-M347
DE-473
DE-BY-UBG
DE-824
DE-20
DE-739
DE-1043
DE-863
DE-BY-FWS
DE-862
DE-BY-FWS
owner_facet DE-12
DE-521
DE-573
DE-523
DE-Re13
DE-BY-UBR
DE-19
DE-BY-UBM
DE-355
DE-BY-UBR
DE-703
DE-91
DE-BY-TUM
DE-706
DE-29
DE-M347
DE-473
DE-BY-UBG
DE-824
DE-20
DE-739
DE-1043
DE-863
DE-BY-FWS
DE-862
DE-BY-FWS
physical 1 Online-Ressource (20 Seiten)
psigel ZDB-1-WBA
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher The World Bank
record_format marc
spellingShingle Van Der Weide, Roy
Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World
Anti-Vaccine Social Media
Arabic Twitter
Communicable Diseases
Covid Vaccine Side Effect Attitudes
COVID-19 Pandemic
Disease Control and Prevention
Health Behavior
Health, Nutrition and Population
Immunizations
Pharmaceuticals and Pharmacoeconomics
Positive Vaccine Messaging
Public Health Promotion
Public Health Survey
Sentiment Data
Social Media Vaccine Endorsements
Vaccine Sentiment
title Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World
title_auth Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World
title_exact_search Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World
title_full Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World Roy Van Der Weide
title_fullStr Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World Roy Van Der Weide
title_full_unstemmed Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World Roy Van Der Weide
title_short Inferring COVID-19 Vaccine Attitudes from Twitter Data
title_sort inferring covid 19 vaccine attitudes from twitter data an application to the arabic speaking world
title_sub An Application to the Arabic Speaking World
topic Anti-Vaccine Social Media
Arabic Twitter
Communicable Diseases
Covid Vaccine Side Effect Attitudes
COVID-19 Pandemic
Disease Control and Prevention
Health Behavior
Health, Nutrition and Population
Immunizations
Pharmaceuticals and Pharmacoeconomics
Positive Vaccine Messaging
Public Health Promotion
Public Health Survey
Sentiment Data
Social Media Vaccine Endorsements
Vaccine Sentiment
topic_facet Anti-Vaccine Social Media
Arabic Twitter
Communicable Diseases
Covid Vaccine Side Effect Attitudes
COVID-19 Pandemic
Disease Control and Prevention
Health Behavior
Health, Nutrition and Population
Immunizations
Pharmaceuticals and Pharmacoeconomics
Positive Vaccine Messaging
Public Health Promotion
Public Health Survey
Sentiment Data
Social Media Vaccine Endorsements
Vaccine Sentiment
url https://doi.org/10.1596/1813-9450-10165
work_keys_str_mv AT vanderweideroy inferringcovid19vaccineattitudesfromtwitterdataanapplicationtothearabicspeakingworld