Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World
This study investigates whether Twitter data can be used to infer attitudes towards COVID-19 vaccination with an application to the Arabic speaking world. At first glance, anti-vaccine sentiment estimated from Twitter data is surprisingly low in comparison to estimates obtained from survey data. Onl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2022
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV049079788 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2022 xxu o|||| 00||| eng d | ||
024 | 7 | |a 10.1596/1813-9450-10165 |2 doi | |
035 | |a (ZDB-1-WBA)082393044 | ||
035 | |a (OCoLC)1392149728 | ||
035 | |a (DE-599)KEP082393044 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Van Der Weide, Roy |e Verfasser |4 aut | |
245 | 1 | 0 | |a Inferring COVID-19 Vaccine Attitudes from Twitter Data |b An Application to the Arabic Speaking World |c Roy Van Der Weide |
264 | 1 | |a Washington, D.C |b The World Bank |c 2022 | |
300 | |a 1 Online-Ressource (20 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a This study investigates whether Twitter data can be used to infer attitudes towards COVID-19 vaccination with an application to the Arabic speaking world. At first glance, anti-vaccine sentiment estimated from Twitter data is surprisingly low in comparison to estimates obtained from survey data. Only about 3 percent of Twitter accounts in our database are identified as anti-COVID-vaccination (compared to 20 to 30 percent of survey respondents). This bias is resolved when: (1) filtering out accounts belonging to organizations that make up a significant share of the discourse on Twitter, and (2) adjusting for the fact that the population of Twitter users is biased towards more educated individuals. The most effective messages on the anti-vaccine side highlight claims that the vaccine causes serious life-threatening side effects. In the pro-vaccine camp, tweets containing content showing public figures receiving the vaccine are found to have the largest reach by far | |
650 | 4 | |a Anti-Vaccine Social Media | |
650 | 4 | |a Arabic Twitter | |
650 | 4 | |a Communicable Diseases | |
650 | 4 | |a Covid Vaccine Side Effect Attitudes | |
650 | 4 | |a COVID-19 Pandemic | |
650 | 4 | |a Disease Control and Prevention | |
650 | 4 | |a Health Behavior | |
650 | 4 | |a Health, Nutrition and Population | |
650 | 4 | |a Immunizations | |
650 | 4 | |a Pharmaceuticals and Pharmacoeconomics | |
650 | 4 | |a Positive Vaccine Messaging | |
650 | 4 | |a Public Health Promotion | |
650 | 4 | |a Public Health Survey | |
650 | 4 | |a Sentiment Data | |
650 | 4 | |a Social Media Vaccine Endorsements | |
650 | 4 | |a Vaccine Sentiment | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Van Der Weide, Roy |t Inferring COVID-19 Vaccine Attitudes from Twitter Data: An Application to the Arabic Speaking World |d Washington, D.C. : The World Bank, 2022 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-10165 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034341679 |
Datensatz im Suchindex
DE-BY-UBM_katkey | 6681443 |
---|---|
DE-BY-UBR_katkey | 6729950 |
_version_ | 1823049477358878720 |
any_adam_object | |
author | Van Der Weide, Roy |
author_facet | Van Der Weide, Roy |
author_role | aut |
author_sort | Van Der Weide, Roy |
author_variant | d w r v dwr dwrv |
building | Verbundindex |
bvnumber | BV049079788 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)082393044 (OCoLC)1392149728 (DE-599)KEP082393044 |
discipline | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-10165 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02969nam a22005171c 4500</leader><controlfield tag="001">BV049079788</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2022 xxu o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-10165</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)082393044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392149728</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP082393044</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Der Weide, Roy</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inferring COVID-19 Vaccine Attitudes from Twitter Data</subfield><subfield code="b">An Application to the Arabic Speaking World</subfield><subfield code="c">Roy Van Der Weide</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (20 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This study investigates whether Twitter data can be used to infer attitudes towards COVID-19 vaccination with an application to the Arabic speaking world. At first glance, anti-vaccine sentiment estimated from Twitter data is surprisingly low in comparison to estimates obtained from survey data. Only about 3 percent of Twitter accounts in our database are identified as anti-COVID-vaccination (compared to 20 to 30 percent of survey respondents). This bias is resolved when: (1) filtering out accounts belonging to organizations that make up a significant share of the discourse on Twitter, and (2) adjusting for the fact that the population of Twitter users is biased towards more educated individuals. The most effective messages on the anti-vaccine side highlight claims that the vaccine causes serious life-threatening side effects. In the pro-vaccine camp, tweets containing content showing public figures receiving the vaccine are found to have the largest reach by far</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-Vaccine Social Media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabic Twitter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communicable Diseases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Covid Vaccine Side Effect Attitudes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19 Pandemic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disease Control and Prevention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health Behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health, Nutrition and Population</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immunizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pharmaceuticals and Pharmacoeconomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Vaccine Messaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Public Health Promotion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Public Health Survey</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social Media Vaccine Endorsements</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vaccine Sentiment</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Van Der Weide, Roy</subfield><subfield code="t">Inferring COVID-19 Vaccine Attitudes from Twitter Data: An Application to the Arabic Speaking World</subfield><subfield code="d">Washington, D.C. : The World Bank, 2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-10165</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034341679</subfield></datafield></record></collection> |
id | DE-604.BV049079788 |
illustrated | Not Illustrated |
indexdate | 2025-02-03T15:58:23Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034341679 |
oclc_num | 1392149728 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (20 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Van Der Weide, Roy Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World Anti-Vaccine Social Media Arabic Twitter Communicable Diseases Covid Vaccine Side Effect Attitudes COVID-19 Pandemic Disease Control and Prevention Health Behavior Health, Nutrition and Population Immunizations Pharmaceuticals and Pharmacoeconomics Positive Vaccine Messaging Public Health Promotion Public Health Survey Sentiment Data Social Media Vaccine Endorsements Vaccine Sentiment |
title | Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World |
title_auth | Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World |
title_exact_search | Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World |
title_full | Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World Roy Van Der Weide |
title_fullStr | Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World Roy Van Der Weide |
title_full_unstemmed | Inferring COVID-19 Vaccine Attitudes from Twitter Data An Application to the Arabic Speaking World Roy Van Der Weide |
title_short | Inferring COVID-19 Vaccine Attitudes from Twitter Data |
title_sort | inferring covid 19 vaccine attitudes from twitter data an application to the arabic speaking world |
title_sub | An Application to the Arabic Speaking World |
topic | Anti-Vaccine Social Media Arabic Twitter Communicable Diseases Covid Vaccine Side Effect Attitudes COVID-19 Pandemic Disease Control and Prevention Health Behavior Health, Nutrition and Population Immunizations Pharmaceuticals and Pharmacoeconomics Positive Vaccine Messaging Public Health Promotion Public Health Survey Sentiment Data Social Media Vaccine Endorsements Vaccine Sentiment |
topic_facet | Anti-Vaccine Social Media Arabic Twitter Communicable Diseases Covid Vaccine Side Effect Attitudes COVID-19 Pandemic Disease Control and Prevention Health Behavior Health, Nutrition and Population Immunizations Pharmaceuticals and Pharmacoeconomics Positive Vaccine Messaging Public Health Promotion Public Health Survey Sentiment Data Social Media Vaccine Endorsements Vaccine Sentiment |
url | https://doi.org/10.1596/1813-9450-10165 |
work_keys_str_mv | AT vanderweideroy inferringcovid19vaccineattitudesfromtwitterdataanapplicationtothearabicspeakingworld |