Dynamical system and chaos an introduction with applications

This textbook introduces the language and the techniques of the theory of dynamical systems of finite dimension for an audience of physicists, engineers, and mathematicians at the beginning of graduation. Author addresses geometric, measure, and computational aspects of the theory of dynamical syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dilão, Rui (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cham, Switzerland Springer [2023]
Schriftenreihe:UNITEXT for physics
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV049064039
003 DE-604
005 20240716
007 t|
008 230724s2023 xx a||| |||| 00||| eng d
020 |a 9783031251535  |c hbk  |9 978-3-031-25153-5 
020 |a 9783031251566  |c pbk  |9 978-3-031-25156-6 
024 3 |a 9783031251535 
035 |a (OCoLC)1401213077 
035 |a (DE-599)BVBBV049064039 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-29T  |a DE-703 
084 |a UG 3900  |0 (DE-625)145629:  |2 rvk 
100 1 |a Dilão, Rui  |e Verfasser  |4 aut 
245 1 0 |a Dynamical system and chaos  |b an introduction with applications  |c Rui Dilão 
264 1 |a Cham, Switzerland  |b Springer  |c [2023] 
300 |a ix, 326 Seiten  |b Illustrationen, Diagramme  |c 731 grams 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a UNITEXT for physics 
500 |a Differential Equations as Dynamical Systems.- Stability of fixed points.- Difference equations as dynamical systems.- Classification of fixed points.- Hamiltonian systems.- Numerical Methods.-Strange Attractors and Maps of an Interval.- Stable, Unstable and Centre manifolds.-Dynamics in the Centre Manifold.- Lyapunov Exponents and Oseledets Theorem.- Chaos.- Limit and Recurrent Sets.-Poincare Maps.- The Poincare-Bendixon Theorem.- Bifurcations of Differential Equations.-Singular Pertubations and Ducks.-Strange Attractors in Delay Equations.- Complexity of Strange Attractors.-Intermittency.- Cellular Automata.- Maps of the Complex Plane.- Stochastic Iteration of Function Systems.- Linear Maps on the Torus and Symbolic Dynamics.- Parametric Resonance.- Robot Motion.- Synchronisation of Pendula.- Synchronisation of Clocks.- Chaos in Stormer Problem.-Introduction to Celestial mechanics.- Introduction to non-Liner control Theory.- Appendices 
520 |a This textbook introduces the language and the techniques of the theory of dynamical systems of finite dimension for an audience of physicists, engineers, and mathematicians at the beginning of graduation. Author addresses geometric, measure, and computational aspects of the theory of dynamical systems. Some freedom is used in the more formal aspects, using only proofs when there is an algorithmic advantage or because a result is simple and powerful.The first part is an introductory course on dynamical systems theory. It can be taught at the master's level during one semester, not requiring specialized mathematical training. In the second part, the author describes some applications of the theory of dynamical systems. Topics often appear in modern dynamical systems and complexity theories, such as singular perturbation theory, delayed equations, cellular automata, fractal sets, maps of the complex plane, and stochastic iterations of function systems are briefly explored for advanced students. The author also explores applications in mechanics, electromagnetism, celestial mechanics, nonlinear control theory, and macroeconomy. A set of problems consolidating the knowledge of the different subjects, including more elaborated exercises, are provided for all chapters 
650 4 |a Dynamical systems 
650 4 |a Mathematical physics 
650 4 |a System theory 
650 0 7 |a Chaotisches System  |0 (DE-588)4316104-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Dynamisches System  |0 (DE-588)4013396-5  |2 gnd  |9 rswk-swf 
653 |a Hardcover, Softcover / Physik, Astronomie/Theoretische Physik 
689 0 0 |a Dynamisches System  |0 (DE-588)4013396-5  |D s 
689 0 1 |a Chaotisches System  |0 (DE-588)4316104-2  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-031-25154-2 
943 1 |a oai:aleph.bib-bvb.de:BVB01-034326129 

Datensatz im Suchindex

_version_ 1819314739364233217
any_adam_object
author Dilão, Rui
author_facet Dilão, Rui
author_role aut
author_sort Dilão, Rui
author_variant r d rd
building Verbundindex
bvnumber BV049064039
classification_rvk UG 3900
ctrlnum (OCoLC)1401213077
(DE-599)BVBBV049064039
discipline Physik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03731nam a2200445 c 4500</leader><controlfield tag="001">BV049064039</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240716 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">230724s2023 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031251535</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-031-25153-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031251566</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-031-25156-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783031251535</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1401213077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049064039</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dilão, Rui</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamical system and chaos</subfield><subfield code="b">an introduction with applications</subfield><subfield code="c">Rui Dilão</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 326 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">731 grams</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">UNITEXT for physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Differential Equations as Dynamical Systems.- Stability of fixed points.- Difference equations as dynamical systems.- Classification of fixed points.- Hamiltonian systems.- Numerical Methods.-Strange Attractors and Maps of an Interval.- Stable, Unstable and Centre manifolds.-Dynamics in the Centre Manifold.- Lyapunov Exponents and Oseledets Theorem.- Chaos.- Limit and Recurrent Sets.-Poincare Maps.- The Poincare-Bendixon Theorem.- Bifurcations of Differential Equations.-Singular Pertubations and Ducks.-Strange Attractors in Delay Equations.- Complexity of Strange Attractors.-Intermittency.- Cellular Automata.- Maps of the Complex Plane.- Stochastic Iteration of Function Systems.- Linear Maps on the Torus and Symbolic Dynamics.- Parametric Resonance.- Robot Motion.- Synchronisation of Pendula.- Synchronisation of Clocks.- Chaos in Stormer Problem.-Introduction to Celestial mechanics.- Introduction to non-Liner control Theory.- Appendices</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This textbook introduces the language and the techniques of the theory of dynamical systems of finite dimension for an audience of physicists, engineers, and mathematicians at the beginning of graduation. Author addresses geometric, measure, and computational aspects of the theory of dynamical systems. Some freedom is used in the more formal aspects, using only proofs when there is an algorithmic advantage or because a result is simple and powerful.The first part is an introductory course on dynamical systems theory. It can be taught at the master's level during one semester, not requiring specialized mathematical training. In the second part, the author describes some applications of the theory of dynamical systems. Topics often appear in modern dynamical systems and complexity theories, such as singular perturbation theory, delayed equations, cellular automata, fractal sets, maps of the complex plane, and stochastic iterations of function systems are briefly explored for advanced students. The author also explores applications in mechanics, electromagnetism, celestial mechanics, nonlinear control theory, and macroeconomy. A set of problems consolidating the knowledge of the different subjects, including more elaborated exercises, are provided for all chapters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Physik, Astronomie/Theoretische Physik</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-25154-2</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034326129</subfield></datafield></record></collection>
id DE-604.BV049064039
illustrated Illustrated
indexdate 2024-12-24T09:48:59Z
institution BVB
isbn 9783031251535
9783031251566
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034326129
oclc_num 1401213077
open_access_boolean
owner DE-29T
DE-703
owner_facet DE-29T
DE-703
physical ix, 326 Seiten Illustrationen, Diagramme 731 grams
publishDate 2023
publishDateSearch 2023
publishDateSort 2023
publisher Springer
record_format marc
series2 UNITEXT for physics
spelling Dilão, Rui Verfasser aut
Dynamical system and chaos an introduction with applications Rui Dilão
Cham, Switzerland Springer [2023]
ix, 326 Seiten Illustrationen, Diagramme 731 grams
txt rdacontent
n rdamedia
nc rdacarrier
UNITEXT for physics
Differential Equations as Dynamical Systems.- Stability of fixed points.- Difference equations as dynamical systems.- Classification of fixed points.- Hamiltonian systems.- Numerical Methods.-Strange Attractors and Maps of an Interval.- Stable, Unstable and Centre manifolds.-Dynamics in the Centre Manifold.- Lyapunov Exponents and Oseledets Theorem.- Chaos.- Limit and Recurrent Sets.-Poincare Maps.- The Poincare-Bendixon Theorem.- Bifurcations of Differential Equations.-Singular Pertubations and Ducks.-Strange Attractors in Delay Equations.- Complexity of Strange Attractors.-Intermittency.- Cellular Automata.- Maps of the Complex Plane.- Stochastic Iteration of Function Systems.- Linear Maps on the Torus and Symbolic Dynamics.- Parametric Resonance.- Robot Motion.- Synchronisation of Pendula.- Synchronisation of Clocks.- Chaos in Stormer Problem.-Introduction to Celestial mechanics.- Introduction to non-Liner control Theory.- Appendices
This textbook introduces the language and the techniques of the theory of dynamical systems of finite dimension for an audience of physicists, engineers, and mathematicians at the beginning of graduation. Author addresses geometric, measure, and computational aspects of the theory of dynamical systems. Some freedom is used in the more formal aspects, using only proofs when there is an algorithmic advantage or because a result is simple and powerful.The first part is an introductory course on dynamical systems theory. It can be taught at the master's level during one semester, not requiring specialized mathematical training. In the second part, the author describes some applications of the theory of dynamical systems. Topics often appear in modern dynamical systems and complexity theories, such as singular perturbation theory, delayed equations, cellular automata, fractal sets, maps of the complex plane, and stochastic iterations of function systems are briefly explored for advanced students. The author also explores applications in mechanics, electromagnetism, celestial mechanics, nonlinear control theory, and macroeconomy. A set of problems consolidating the knowledge of the different subjects, including more elaborated exercises, are provided for all chapters
Dynamical systems
Mathematical physics
System theory
Chaotisches System (DE-588)4316104-2 gnd rswk-swf
Dynamisches System (DE-588)4013396-5 gnd rswk-swf
Hardcover, Softcover / Physik, Astronomie/Theoretische Physik
Dynamisches System (DE-588)4013396-5 s
Chaotisches System (DE-588)4316104-2 s
DE-604
Erscheint auch als Online-Ausgabe 978-3-031-25154-2
spellingShingle Dilão, Rui
Dynamical system and chaos an introduction with applications
Dynamical systems
Mathematical physics
System theory
Chaotisches System (DE-588)4316104-2 gnd
Dynamisches System (DE-588)4013396-5 gnd
subject_GND (DE-588)4316104-2
(DE-588)4013396-5
title Dynamical system and chaos an introduction with applications
title_auth Dynamical system and chaos an introduction with applications
title_exact_search Dynamical system and chaos an introduction with applications
title_full Dynamical system and chaos an introduction with applications Rui Dilão
title_fullStr Dynamical system and chaos an introduction with applications Rui Dilão
title_full_unstemmed Dynamical system and chaos an introduction with applications Rui Dilão
title_short Dynamical system and chaos
title_sort dynamical system and chaos an introduction with applications
title_sub an introduction with applications
topic Dynamical systems
Mathematical physics
System theory
Chaotisches System (DE-588)4316104-2 gnd
Dynamisches System (DE-588)4013396-5 gnd
topic_facet Dynamical systems
Mathematical physics
System theory
Chaotisches System
Dynamisches System
work_keys_str_mv AT dilaorui dynamicalsystemandchaosanintroductionwithapplications