CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks

Previous works have validated that text generation APIs can be stolen through imitation attacks, causing IP violations. In order to protect the IP of text generation APIs, a recent work has introduced a watermarking algorithm and utilized the null-hypothesis test as a post-hoc ownership verification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: 2022
Schlagworte:
Online-Zugang:View online
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV049047212
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 230712s2022 xx o|||| 00||| eng d
035 |a (DE-599)BVBBV049047212 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-M382 
245 1 0 |a CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks  |c Xuanli He (University College London), Qiongkai Xu (University of Melbourne), Yi Zeng (Virginia Tech), Lingjuan Lyu (Sony AI), Fangzhao Wu (Microsoft Research Asia), Jiwei Li (Shannon.AI, Zhejiang University), Ruoxi Jia (Virginia Tech) 
264 1 |c 2022 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 3 |a Previous works have validated that text generation APIs can be stolen through imitation attacks, causing IP violations. In order to protect the IP of text generation APIs, a recent work has introduced a watermarking algorithm and utilized the null-hypothesis test as a post-hoc ownership verification on the imitation models. However, we find that it is possible to detect those watermarks via sufficient statistics of the frequencies of candidate watermarking words. To address this drawback, in this paper, we propose a novel Conditional wATERmarking framework (CATER) for protecting the IP of text generation APIs. An optimization method is proposed to decide the watermarking rules that can minimize the distortion of overall word distributions while maximizing the change of conditional word selections. Theoretically, we prove that it is infeasible for even the savviest attacker (they know how CATER works) to reveal the used watermarks from a large pool of potential word pairs based on statistical inspection. Empirically, we observe that high-order conditions lead to an exponential growth of suspicious (unused) watermarks, making our crafted watermarks more stealthy. In addition, \cater can effectively identify the IP infringement under architectural mismatch and cross-domain imitation attacks, with negligible impairments on the generation quality of victim APIs. We envision our work as a milestone for stealthily protecting the IP of text generation APIs 
520 3 |a Comment: accepted to NeurIPS 2022 
653 |a Computer Science - Cryptography and Security 
653 6 |a text 
700 1 |a He, Xuanli  |e Sonstige  |4 oth 
700 1 |a Xu, Qiongkai  |e Sonstige  |4 oth 
700 1 |a Zeng, Yi  |e Sonstige  |0 (DE-588)171891996  |4 oth 
700 1 |a Lyu, Lingjuan  |e Sonstige  |4 oth 
700 1 |a Wu, Fangzhao  |e Sonstige  |4 oth 
700 1 |a Li, Jiwei  |d 1960-  |e Sonstige  |0 (DE-588)1147791279  |4 oth 
700 1 |a Jia, Ruoxi  |e Sonstige  |4 oth 
856 4 0 |u http://arxiv.org/abs/2209.08773  |y View online  |3 Item Resolution URL 
943 1 |a oai:aleph.bib-bvb.de:BVB01-034309659 

Datensatz im Suchindex

_version_ 1819314708482621440
any_adam_object
author_GND (DE-588)171891996
(DE-588)1147791279
building Verbundindex
bvnumber BV049047212
ctrlnum (DE-599)BVBBV049047212
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02850nam a2200349 c 4500</leader><controlfield tag="001">BV049047212</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230712s2022 xx o|||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049047212</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M382</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks</subfield><subfield code="c">Xuanli He (University College London), Qiongkai Xu (University of Melbourne), Yi Zeng (Virginia Tech), Lingjuan Lyu (Sony AI), Fangzhao Wu (Microsoft Research Asia), Jiwei Li (Shannon.AI, Zhejiang University), Ruoxi Jia (Virginia Tech)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Previous works have validated that text generation APIs can be stolen through imitation attacks, causing IP violations. In order to protect the IP of text generation APIs, a recent work has introduced a watermarking algorithm and utilized the null-hypothesis test as a post-hoc ownership verification on the imitation models. However, we find that it is possible to detect those watermarks via sufficient statistics of the frequencies of candidate watermarking words. To address this drawback, in this paper, we propose a novel Conditional wATERmarking framework (CATER) for protecting the IP of text generation APIs. An optimization method is proposed to decide the watermarking rules that can minimize the distortion of overall word distributions while maximizing the change of conditional word selections. Theoretically, we prove that it is infeasible for even the savviest attacker (they know how CATER works) to reveal the used watermarks from a large pool of potential word pairs based on statistical inspection. Empirically, we observe that high-order conditions lead to an exponential growth of suspicious (unused) watermarks, making our crafted watermarks more stealthy. In addition, \cater can effectively identify the IP infringement under architectural mismatch and cross-domain imitation attacks, with negligible impairments on the generation quality of victim APIs. We envision our work as a milestone for stealthily protecting the IP of text generation APIs</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Comment: accepted to NeurIPS 2022</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computer Science - Cryptography and Security</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">text</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Xuanli</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Qiongkai</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Yi</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)171891996</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lyu, Lingjuan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Fangzhao</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jiwei</subfield><subfield code="d">1960-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1147791279</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Ruoxi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://arxiv.org/abs/2209.08773</subfield><subfield code="y">View online</subfield><subfield code="3">Item Resolution URL</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034309659</subfield></datafield></record></collection>
id DE-604.BV049047212
illustrated Not Illustrated
indexdate 2024-12-24T09:48:27Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034309659
open_access_boolean
owner DE-M382
owner_facet DE-M382
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
record_format marc
spelling CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks Xuanli He (University College London), Qiongkai Xu (University of Melbourne), Yi Zeng (Virginia Tech), Lingjuan Lyu (Sony AI), Fangzhao Wu (Microsoft Research Asia), Jiwei Li (Shannon.AI, Zhejiang University), Ruoxi Jia (Virginia Tech)
2022
txt rdacontent
c rdamedia
cr rdacarrier
Previous works have validated that text generation APIs can be stolen through imitation attacks, causing IP violations. In order to protect the IP of text generation APIs, a recent work has introduced a watermarking algorithm and utilized the null-hypothesis test as a post-hoc ownership verification on the imitation models. However, we find that it is possible to detect those watermarks via sufficient statistics of the frequencies of candidate watermarking words. To address this drawback, in this paper, we propose a novel Conditional wATERmarking framework (CATER) for protecting the IP of text generation APIs. An optimization method is proposed to decide the watermarking rules that can minimize the distortion of overall word distributions while maximizing the change of conditional word selections. Theoretically, we prove that it is infeasible for even the savviest attacker (they know how CATER works) to reveal the used watermarks from a large pool of potential word pairs based on statistical inspection. Empirically, we observe that high-order conditions lead to an exponential growth of suspicious (unused) watermarks, making our crafted watermarks more stealthy. In addition, \cater can effectively identify the IP infringement under architectural mismatch and cross-domain imitation attacks, with negligible impairments on the generation quality of victim APIs. We envision our work as a milestone for stealthily protecting the IP of text generation APIs
Comment: accepted to NeurIPS 2022
Computer Science - Cryptography and Security
text
He, Xuanli Sonstige oth
Xu, Qiongkai Sonstige oth
Zeng, Yi Sonstige (DE-588)171891996 oth
Lyu, Lingjuan Sonstige oth
Wu, Fangzhao Sonstige oth
Li, Jiwei 1960- Sonstige (DE-588)1147791279 oth
Jia, Ruoxi Sonstige oth
http://arxiv.org/abs/2209.08773 View online Item Resolution URL
spellingShingle CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks
title CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks
title_auth CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks
title_exact_search CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks
title_full CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks Xuanli He (University College London), Qiongkai Xu (University of Melbourne), Yi Zeng (Virginia Tech), Lingjuan Lyu (Sony AI), Fangzhao Wu (Microsoft Research Asia), Jiwei Li (Shannon.AI, Zhejiang University), Ruoxi Jia (Virginia Tech)
title_fullStr CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks Xuanli He (University College London), Qiongkai Xu (University of Melbourne), Yi Zeng (Virginia Tech), Lingjuan Lyu (Sony AI), Fangzhao Wu (Microsoft Research Asia), Jiwei Li (Shannon.AI, Zhejiang University), Ruoxi Jia (Virginia Tech)
title_full_unstemmed CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks Xuanli He (University College London), Qiongkai Xu (University of Melbourne), Yi Zeng (Virginia Tech), Lingjuan Lyu (Sony AI), Fangzhao Wu (Microsoft Research Asia), Jiwei Li (Shannon.AI, Zhejiang University), Ruoxi Jia (Virginia Tech)
title_short CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks
title_sort cater intellectual property protection on text generation apis via conditional watermarks
url http://arxiv.org/abs/2209.08773
work_keys_str_mv AT hexuanli caterintellectualpropertyprotectionontextgenerationapisviaconditionalwatermarks
AT xuqiongkai caterintellectualpropertyprotectionontextgenerationapisviaconditionalwatermarks
AT zengyi caterintellectualpropertyprotectionontextgenerationapisviaconditionalwatermarks
AT lyulingjuan caterintellectualpropertyprotectionontextgenerationapisviaconditionalwatermarks
AT wufangzhao caterintellectualpropertyprotectionontextgenerationapisviaconditionalwatermarks
AT lijiwei caterintellectualpropertyprotectionontextgenerationapisviaconditionalwatermarks
AT jiaruoxi caterintellectualpropertyprotectionontextgenerationapisviaconditionalwatermarks