Environmental Footprints of Crops

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Muthu, Subramanian Senthilkannan (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore Springer 2022
Ausgabe:1st ed
Schriftenreihe:Environmental Footprints and Eco-Design of Products and Processes Series
Schlagworte:
Online-Zugang:DE-2070s
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Intro
  • Contents
  • About the Editor
  • Water Footprint of Fruits in Arid and Semi-arid Regions
  • 1 Introduction
  • 2 Data Source and Methodology
  • 2.1 Calculation of Water footprint components
  • 2.2 Economical Value of Water Footprint
  • 3 Water footprint components in date palm
  • 3.1 Introduction
  • 3.2 Cultivation Area, Crop Yield, Production, and Chemical Fertilizer Consumption
  • 3.3 Water Footprint (WF) and Water Footprint Economic Value (WFEV)
  • 3.4 Volume of WFCs in Each Cultivars
  • 4 Water Footprint in Almond
  • 4.1 Introduction
  • 4.2 The Cultivation Area, Crop Yield, Production, and Chemical Fertilizer of Almond Production
  • 4.3 Almond Water Footprint in Iran
  • 4.4 Economic Values of Water Footprint (WFEV) in Almond
  • 4.5 Volumes of Water Footprint Components in Almond Production
  • 5 Water Footprint in Walnuts
  • 5.1 Introduction
  • 5.2 The Sown Area, Total Production, and Yield of Walnut Production
  • 5.3 Walnut Water Footprint in Iran
  • 5.4 Economic values of water footprint (WFEV) in walnut
  • 5.5 Volumes of Water Footprint Components in Walnut Production
  • 6 Conclusion and Summary
  • References
  • Appraising the Water Status in Egypt Through the Application of the Virtual Water Principle in the Agricultural Sector
  • 1 Introduction
  • 2 Material and Methods
  • 2.1 Calculating the Virtual Water for Agricultural Crops
  • 2.2 Calculation of the Virtual Water for Agricultural Products
  • 2.3 Water Footprint and Its Indicators
  • 2.4 Food Security and Food Self-sufficiency in Egypt
  • 3 Results and Discussions
  • 3.1 Virtual Water for Agricultural Crops
  • 3.2 The Virtual Water for Agricultural Products
  • 3.3 Indicators of Water Footprint
  • 3.4 Food Security and Food Self-sufficiency
  • 3.5 The Volume of Virtual Water Required for Self-sufficiency
  • 4 Conclusion
  • Appendices
  • Appendix 1: The Virtual Water Volume for Selected Crops
  • Appendix 2: Consumption and Food Gap for Wheat, Rice and Maize Crops
  • Appendix 3A: Self-sufficiency Ratio SSR for the Wheat Crop
  • Appendix 3B: Self-sufficiency Ratio SSR for the Maize Crop
  • Appendix 4: Required Water Needed for Crops (million m3)
  • References
  • Cereal Water Footprint in Arid and Semi-arid Regions: Past, Today and Future
  • 1 Introduction
  • 1.1 Water Resources Management
  • 1.2 Importance of Cereals for Food Security
  • 1.3 Importance of Water Footprint
  • 2 Arid and Semi-arid Regions
  • 3 Water Footprint (WF) Calculation
  • 4 Cereal Water Footprint in Past and Today
  • 4.1 Cereal Water Footprint in Different Regions of the World
  • 4.2 Cereal Water Footprint in Iran
  • 4.3 Cereal Water Footprint in Qazvin Plain
  • 5 Cereal Water Footprint in the Future
  • 5.1 Climate Change Scenarios
  • 5.2 Cereal Water Footprint in Different Regions of the World in Future
  • 5.3 Maize Water Footprint in Qazvin Plain in Future
  • 5.4 Wheat Water Footprint in Qazvin Plain in Future
  • 6 Cereal Water Footprint Improvement
  • 7 Water Shortage: Management and Consequences
  • References
  • Environmental Footprints of Hydrogen from Crops
  • 1 Introduction
  • 2 Overview of the Current Hydrogen Industry
  • 3 Hydrogen from Crops: Thermochemical Processes
  • 3.1 Steam Reforming
  • 3.2 Dry Reforming
  • 3.3 Partial Oxidation and Autothermal Reforming
  • 3.4 Pyrolysis
  • 4 Hydrogen from Crops: Biological Processes
  • 5 Electrolysis as an Alternative for Green Hydrogen Production
  • 6 Environmental Footprints of Hydrogen Production
  • 6.1 Gray, Blue, and Green Hydrogen
  • 6.2 Hydrogen from Biomass
  • 6.3 Biological Hydrogen
  • 7 Conclusions and Key Challenges for a Greener Hydrogen Matrix
  • References
  • Designing an Energy Use Analysis and Life Cycle Assessment of the Environmental Sustainability of Conservation Agriculture Wheat Farming in Bangladesh
  • 1 Introduction
  • 2 Materials and Methods
  • 2.1 Study Site, Design, and Soil Sampling
  • 2.2 Soil Tillage and Agronomic Management Practices
  • 2.3 LCA Modeling
  • 2.4 Data Analysis
  • 3 Results and Discussion
  • 3.1 Energy Use Analysis
  • 3.2 Energy Indicators in Wheat Farming
  • 3.3 Assessment of Life Cycle GHG Emission and Carbon Footprint
  • 3.4 Net Life Cycle GHG emission
  • 4 Conclusion
  • References