Data-driven decision-making in churn prevention and crew scheduling

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gattermann-Itschert, Theresa (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin Logos Verlag [2022]
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV048957571
003 DE-604
005 00000000000000.0
007 t
008 230511s2022 gw a||| m||| 00||| eng d
015 |a 22,N05  |2 dnb 
015 |a 23,A12  |2 dnb 
015 |a 23,H04  |2 dnb 
016 7 |a 1250593840  |2 DE-101 
020 |a 9783832554309  |c Broschur : EUR 36.50 (DE), EUR 37.50 (AT)  |9 978-3-8325-5430-9 
020 |a 3832554300  |9 3-8325-5430-0 
024 3 |a 9783832554309 
035 |a (OCoLC)1373709724 
035 |a (DE-599)DNB1250593840 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-N2 
082 0 4 |a 658.515  |2 23/ger 
084 |a QP 327  |0 (DE-625)141858:  |2 rvk 
084 |8 1\p  |a 650  |2 23sdnb 
084 |8 2\p  |a 004  |2 23sdnb 
100 1 |a Gattermann-Itschert, Theresa  |e Verfasser  |4 aut 
245 1 0 |a Data-driven decision-making in churn prevention and crew scheduling  |c Theresa Gattermann-Itschert 
264 1 |a Berlin  |b Logos Verlag  |c [2022] 
300 |a IX, 119 Seiten  |b Illustrationen  |c 21 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Entscheidungsfindung  |0 (DE-588)4113446-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Prozessoptimierung  |0 (DE-588)4176074-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Datenanalyse  |0 (DE-588)4123037-1  |2 gnd  |9 rswk-swf 
653 |a Machine learning 
653 |a Optimization 
653 |a Churn prediction 
653 |a Churn prevention 
653 |a Crew schedulin 
655 7 |0 (DE-588)4113937-9  |a Hochschulschrift  |2 gnd-content 
689 0 0 |a Prozessoptimierung  |0 (DE-588)4176074-8  |D s 
689 0 1 |a Datenanalyse  |0 (DE-588)4123037-1  |D s 
689 0 2 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 3 |a Entscheidungsfindung  |0 (DE-588)4113446-1  |D s 
689 0 |5 DE-604 
710 2 |a Logos Verlag Berlin  |0 (DE-588)1065538812  |4 pbl 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=4365081a32134479a7b522f20ea11003&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m B:DE-101  |q application/pdf  |u https://d-nb.info/1250593840/04  |3 Inhaltsverzeichnis 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034221382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-034221382 
883 2 |8 1\p  |a dnb  |d 20230316  |q DE-101  |u https://d-nb.info/provenance/plan#dnb 
883 2 |8 2\p  |a dnb  |d 20230316  |q DE-101  |u https://d-nb.info/provenance/plan#dnb 

Datensatz im Suchindex

_version_ 1804185186711109632
adam_text CONTENTS LIST OF FIGURES V LIST OF TABLES VII LIST OF ABBREVIATIONS IX 1 INTRODUCTION 1 1.1 MOTIVATION ............................................................................................ 1 1.2 OUTLINE AND CONTRIBUTION .................................................................... 2 2 HOW MULTI-SLICING IMPROVES PERFORMANCE IN CHURN PREDICTION 7 2.1 ABSTRACT ............................................................................................... 8 2.2 INTRODUCTION ......................................................................................... 8 2.3 LITERATURE REVIEW ................................................................................ 10 2.3.1 CHURN PREDICTION WITH CLASSIFICATION TECHNIQUES .................... 10 2.3.2 MODEL TESTING APPROACHES ..................................................... 11 2.3.3 MODEL TRAINING WITH DATA FROM MULTIPLE PERIODS ................. 12 2.4 METHODOLOGY ...................................................................................... 13 2.4.1 TIME SLICES .............................................................................. 13 2.4.2 MULTI-SLICING .............................................................................. 14 2.4.3 CROSS-VALIDATION WITH TIME SLICES ............................................ 15 2.5 EMPIRICAL STUDY ................................................................................... 17 2.5.1 DATASET .................................................................................... 17 2.5.2 CHURN DEFINITION ..................................................................... 18 2.5.3 FEATURES .................................................................................... 19 2.6 EXPERIMENTAL SETTING ......................................................................... 20 2.6.1 FEATURE SELECTION ..................................................................... 21 2.6.2 EVALUATION METRICS .................................................................. 21 2.6.3 MODEL TRAINING ........................................................................ 22 2.6.4 CROSS-VALIDATION AND STATISTICAL TESTING ................................ 24 2.6.5 SINGLE AND MULTI-SLICING VERSIONS ......................................... 24 I 2.7 RESULTS ..................................................................................................... 25 2.7.1 CLASSIFIER SELECTION .................................................................. 25 2.7.2 PERFORMANCE ENHANCEMENT WITH MULTI-SLICING ....................... 27 2.7.3 EFFECTS OF SAMPLE SIZE AND INCLUDING SAMPLES FROM MULTIPLE TIME SLICES ................................................................................. 28 2.7.4 IMPACT OF NUMBER OF TIME SLICES .............................................. 29 2.8 CONCLUSION ............................................................................................... 29 2. A FEATURES .................................................................................................. 32 2.B DETAILS ON FEATURE SELECTION ................................................................... 33 2.C FEATURE IMPORTANCES ............................................................................ 34 3 PROACTIVE RETENTION MANAGEMENT BASED ON CHURN PREDICTION 37 3.1 ABSTRACT .................................................................................................. 38 3.2 INTRODUCTION ............................................................................................ 38 3.3 CASE STUDY ............................................................................................... 40 3.3.1 CUSTOMER CHURN ......................................................................... 41 3.3.2 CUSTOMER RETENTION ................................................................... 42 3.4 CHURN PREDICTION MODEL ...................................................................... 43 3.4.1 MODEL TRAINING AND EVALUATION ................................................ 43 3.4.2 FEATURE ENGINEERING ................................................................... 45 3.4.2.1 RECENCY, FREQUENCY AND MONETARY VALUE ............. 45 3.4.2.2 FEATURES SPECIFIC FOR B2B RELATIONSHIPS ................ 46 3.4.3 PERFORMANCE MEASURES ............................................................ 49 3.4.3.1 THRESHOLD-DEPENDENT MEASURES ............................ 49 3.4.3.2 THRESHOLD-INDEPENDENT MEASURES ......................... 49 3.4.3.3 DOMAIN-SPECIFIC MEASURES ...................................... 50 3.4.4 PREDICTION RESULTS ..................................................................... 50 3.4.5 FEATURE IMPORTANCES ............................................................... 51 3.5 EXPERIMENTAL SETTING ............................................................................ 53 3.6 EXPERIMENTAL DESIGN ............................................................................ 55 3.7 RESULTS AND DISCUSSION ......................................................................... 56 3.7.1 CHURN PREDICTION ..................................................................... 57 3.7.2 CHURN PREVENTION ..................................................................... 59 3.7.3 REVENUE CHANGE ........................................................................ 59 3.8 CONCLUSIONS ............................................................................................ 60 3.8.1 THEORETICAL IMPLICATIONS ......................................................... 61 3.8.2 MANAGERIAL IMPLICATIONS ......................................................... 62 3.8.3 LIMITATIONS ............................................................................... 63 II 3. A DETAILS ON MODEL TRAINING ................................................................ 65 4 LEARNING PLANNERS PREFERENCES IN CREW SCHEDULING OPTIMIZATION 67 4.1 ABSTRACT ............................................................................................... 68 4.2 INTRODUCTION ......................................................................................... 68 4.3 LITERATURE REVIEW ................................................................................ 70 4.4 PROBLEM SETTING ................................................................................... 71 4.5 INTEGRATION APPROACH ......................................................................... 72 4.6 METHODOLOGY ...................................................................................... 73 4.6.1 DATA COLLECTION ........................................................................ 73 4.6.2 DATA PREPARATION ..................................................................... 74 4.6.3 MODEL BUILDING ........................................................................ 76 4.6.4 MODEL EVALUATION ..................................................................... 77 4.7 RESULTS .................................................................................................. 78 4.7.1 PREDICTIVE PERFORMANCE ............................................................ 78 4.7.2 MODEL INTERPRETATION ............................................................... 79 4.7.2.1 FEATURE IMPORTANCES ............................................... 79 4.7.2.2 PARTIAL DEPENDENCE PLOTS ......................................... 80 4.7.2.3 SHAP VALUES ............................................................ 82 4.8 CONCLUSION ............................................................................................. 84 5 INCLUDING PLANNERS PREFERENCES IN CREW SCHEDULING OPTIMIZATION 87 5.1 ABSTRACT ............................................................................................... 88 5.2 INTRODUCTION ......................................................................................... 88 5.3 LITERATURE REVIEW ............................................................................... 90 5.3.1 CREW SCHEDULING ........................................................................ 90 5.3.2 PREFERENCE LEARNING .................................................................. 91 5.3.3 MACHINE LEARNING AND COMBINATORIAL OPTIMIZATION ............. 91 5.4 PROBLEM SETTING ................................................................................... 93 5.5 SOLUTION APPROACH ................................................................................ 93 5.6 PREDICTION MODEL ................................................................................ 94 5.7 EMPIRICAL STUDY ................................................................................... 94 5.7.1 DATA SET ..................................................................................... 95 5.7.2 BENCHMARK AND EVALUATION METHOD ...................................... 96 5.8 RESULTS .................................................................................................. 96 5.8.1 PLANNER ACCEPTANCE PROBABILITY ............................................. 97 5.8.2 COST OBJECTIVE ............................................................................ 98 5.8.3 DUTY CHARACTERISTICS .................................................................. 99 III 5.9 CONCLUSION .................................................................................................. 101 6 CONCLUSION 105 6.1 SUMMARY OF KEY RESULTS ............................................................................ 105 6.2 CRITICAL REVIEW AND FUTURE RESEARCH ...................................................... 107 BIBLIOGRAPHY 110 IV
adam_txt CONTENTS LIST OF FIGURES V LIST OF TABLES VII LIST OF ABBREVIATIONS IX 1 INTRODUCTION 1 1.1 MOTIVATION . 1 1.2 OUTLINE AND CONTRIBUTION . 2 2 HOW MULTI-SLICING IMPROVES PERFORMANCE IN CHURN PREDICTION 7 2.1 ABSTRACT . 8 2.2 INTRODUCTION . 8 2.3 LITERATURE REVIEW . 10 2.3.1 CHURN PREDICTION WITH CLASSIFICATION TECHNIQUES . 10 2.3.2 MODEL TESTING APPROACHES . 11 2.3.3 MODEL TRAINING WITH DATA FROM MULTIPLE PERIODS . 12 2.4 METHODOLOGY . 13 2.4.1 TIME SLICES . 13 2.4.2 MULTI-SLICING . 14 2.4.3 CROSS-VALIDATION WITH TIME SLICES . 15 2.5 EMPIRICAL STUDY . 17 2.5.1 DATASET . 17 2.5.2 CHURN DEFINITION . 18 2.5.3 FEATURES . 19 2.6 EXPERIMENTAL SETTING . 20 2.6.1 FEATURE SELECTION . 21 2.6.2 EVALUATION METRICS . 21 2.6.3 MODEL TRAINING . 22 2.6.4 CROSS-VALIDATION AND STATISTICAL TESTING . 24 2.6.5 SINGLE AND MULTI-SLICING VERSIONS . 24 I 2.7 RESULTS . 25 2.7.1 CLASSIFIER SELECTION . 25 2.7.2 PERFORMANCE ENHANCEMENT WITH MULTI-SLICING . 27 2.7.3 EFFECTS OF SAMPLE SIZE AND INCLUDING SAMPLES FROM MULTIPLE TIME SLICES . 28 2.7.4 IMPACT OF NUMBER OF TIME SLICES . 29 2.8 CONCLUSION . 29 2. A FEATURES . 32 2.B DETAILS ON FEATURE SELECTION . 33 2.C FEATURE IMPORTANCES . 34 3 PROACTIVE RETENTION MANAGEMENT BASED ON CHURN PREDICTION 37 3.1 ABSTRACT . 38 3.2 INTRODUCTION . 38 3.3 CASE STUDY . 40 3.3.1 CUSTOMER CHURN . 41 3.3.2 CUSTOMER RETENTION . 42 3.4 CHURN PREDICTION MODEL . 43 3.4.1 MODEL TRAINING AND EVALUATION . 43 3.4.2 FEATURE ENGINEERING . 45 3.4.2.1 RECENCY, FREQUENCY AND MONETARY VALUE . 45 3.4.2.2 FEATURES SPECIFIC FOR B2B RELATIONSHIPS . 46 3.4.3 PERFORMANCE MEASURES . 49 3.4.3.1 THRESHOLD-DEPENDENT MEASURES . 49 3.4.3.2 THRESHOLD-INDEPENDENT MEASURES . 49 3.4.3.3 DOMAIN-SPECIFIC MEASURES . 50 3.4.4 PREDICTION RESULTS . 50 3.4.5 FEATURE IMPORTANCES . 51 3.5 EXPERIMENTAL SETTING . 53 3.6 EXPERIMENTAL DESIGN . 55 3.7 RESULTS AND DISCUSSION . 56 3.7.1 CHURN PREDICTION . 57 3.7.2 CHURN PREVENTION . 59 3.7.3 REVENUE CHANGE . 59 3.8 CONCLUSIONS . 60 3.8.1 THEORETICAL IMPLICATIONS . 61 3.8.2 MANAGERIAL IMPLICATIONS . 62 3.8.3 LIMITATIONS . 63 II 3. A DETAILS ON MODEL TRAINING . 65 4 LEARNING PLANNERS ' PREFERENCES IN CREW SCHEDULING OPTIMIZATION 67 4.1 ABSTRACT . 68 4.2 INTRODUCTION . 68 4.3 LITERATURE REVIEW . 70 4.4 PROBLEM SETTING . 71 4.5 INTEGRATION APPROACH . 72 4.6 METHODOLOGY . 73 4.6.1 DATA COLLECTION . 73 4.6.2 DATA PREPARATION . 74 4.6.3 MODEL BUILDING . 76 4.6.4 MODEL EVALUATION . 77 4.7 RESULTS . 78 4.7.1 PREDICTIVE PERFORMANCE . 78 4.7.2 MODEL INTERPRETATION . 79 4.7.2.1 FEATURE IMPORTANCES . 79 4.7.2.2 PARTIAL DEPENDENCE PLOTS . 80 4.7.2.3 SHAP VALUES . 82 4.8 CONCLUSION . 84 5 INCLUDING PLANNERS ' PREFERENCES IN CREW SCHEDULING OPTIMIZATION 87 5.1 ABSTRACT . 88 5.2 INTRODUCTION . 88 5.3 LITERATURE REVIEW . 90 5.3.1 CREW SCHEDULING . 90 5.3.2 PREFERENCE LEARNING . 91 5.3.3 MACHINE LEARNING AND COMBINATORIAL OPTIMIZATION . 91 5.4 PROBLEM SETTING . 93 5.5 SOLUTION APPROACH . 93 5.6 PREDICTION MODEL . 94 5.7 EMPIRICAL STUDY . 94 5.7.1 DATA SET . 95 5.7.2 BENCHMARK AND EVALUATION METHOD . 96 5.8 RESULTS . 96 5.8.1 PLANNER ACCEPTANCE PROBABILITY . 97 5.8.2 COST OBJECTIVE . 98 5.8.3 DUTY CHARACTERISTICS . 99 III 5.9 CONCLUSION . 101 6 CONCLUSION 105 6.1 SUMMARY OF KEY RESULTS . 105 6.2 CRITICAL REVIEW AND FUTURE RESEARCH . 107 BIBLIOGRAPHY 110 IV
any_adam_object 1
any_adam_object_boolean 1
author Gattermann-Itschert, Theresa
author_facet Gattermann-Itschert, Theresa
author_role aut
author_sort Gattermann-Itschert, Theresa
author_variant t g i tgi
building Verbundindex
bvnumber BV048957571
classification_rvk QP 327
ctrlnum (OCoLC)1373709724
(DE-599)DNB1250593840
dewey-full 658.515
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 658 - General management
dewey-raw 658.515
dewey-search 658.515
dewey-sort 3658.515
dewey-tens 650 - Management and auxiliary services
discipline Wirtschaftswissenschaften
discipline_str_mv Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02644nam a2200637 c 4500</leader><controlfield tag="001">BV048957571</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230511s2022 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,N05</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,A12</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,H04</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1250593840</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783832554309</subfield><subfield code="c">Broschur : EUR 36.50 (DE), EUR 37.50 (AT)</subfield><subfield code="9">978-3-8325-5430-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3832554300</subfield><subfield code="9">3-8325-5430-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783832554309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1373709724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1250593840</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-N2</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">658.515</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 327</subfield><subfield code="0">(DE-625)141858:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">650</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gattermann-Itschert, Theresa</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-driven decision-making in churn prevention and crew scheduling</subfield><subfield code="c">Theresa Gattermann-Itschert</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Logos Verlag</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 119 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">21 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidungsfindung</subfield><subfield code="0">(DE-588)4113446-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessoptimierung</subfield><subfield code="0">(DE-588)4176074-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Optimization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Churn prediction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Churn prevention</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Crew schedulin</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Prozessoptimierung</subfield><subfield code="0">(DE-588)4176074-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Entscheidungsfindung</subfield><subfield code="0">(DE-588)4113446-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Logos Verlag Berlin</subfield><subfield code="0">(DE-588)1065538812</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4365081a32134479a7b522f20ea11003&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1250593840/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=034221382&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034221382</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20230316</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20230316</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield></record></collection>
genre (DE-588)4113937-9 Hochschulschrift gnd-content
genre_facet Hochschulschrift
id DE-604.BV048957571
illustrated Illustrated
index_date 2024-07-03T21:59:30Z
indexdate 2024-07-10T09:51:14Z
institution BVB
institution_GND (DE-588)1065538812
isbn 9783832554309
3832554300
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034221382
oclc_num 1373709724
open_access_boolean
owner DE-N2
owner_facet DE-N2
physical IX, 119 Seiten Illustrationen 21 cm
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher Logos Verlag
record_format marc
spelling Gattermann-Itschert, Theresa Verfasser aut
Data-driven decision-making in churn prevention and crew scheduling Theresa Gattermann-Itschert
Berlin Logos Verlag [2022]
IX, 119 Seiten Illustrationen 21 cm
txt rdacontent
n rdamedia
nc rdacarrier
Entscheidungsfindung (DE-588)4113446-1 gnd rswk-swf
Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf
Prozessoptimierung (DE-588)4176074-8 gnd rswk-swf
Datenanalyse (DE-588)4123037-1 gnd rswk-swf
Machine learning
Optimization
Churn prediction
Churn prevention
Crew schedulin
(DE-588)4113937-9 Hochschulschrift gnd-content
Prozessoptimierung (DE-588)4176074-8 s
Datenanalyse (DE-588)4123037-1 s
Maschinelles Lernen (DE-588)4193754-5 s
Entscheidungsfindung (DE-588)4113446-1 s
DE-604
Logos Verlag Berlin (DE-588)1065538812 pbl
X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=4365081a32134479a7b522f20ea11003&prov=M&dok_var=1&dok_ext=htm Inhaltstext
B:DE-101 application/pdf https://d-nb.info/1250593840/04 Inhaltsverzeichnis
DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034221382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
1\p dnb 20230316 DE-101 https://d-nb.info/provenance/plan#dnb
2\p dnb 20230316 DE-101 https://d-nb.info/provenance/plan#dnb
spellingShingle Gattermann-Itschert, Theresa
Data-driven decision-making in churn prevention and crew scheduling
Entscheidungsfindung (DE-588)4113446-1 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Prozessoptimierung (DE-588)4176074-8 gnd
Datenanalyse (DE-588)4123037-1 gnd
subject_GND (DE-588)4113446-1
(DE-588)4193754-5
(DE-588)4176074-8
(DE-588)4123037-1
(DE-588)4113937-9
title Data-driven decision-making in churn prevention and crew scheduling
title_auth Data-driven decision-making in churn prevention and crew scheduling
title_exact_search Data-driven decision-making in churn prevention and crew scheduling
title_exact_search_txtP Data-driven decision-making in churn prevention and crew scheduling
title_full Data-driven decision-making in churn prevention and crew scheduling Theresa Gattermann-Itschert
title_fullStr Data-driven decision-making in churn prevention and crew scheduling Theresa Gattermann-Itschert
title_full_unstemmed Data-driven decision-making in churn prevention and crew scheduling Theresa Gattermann-Itschert
title_short Data-driven decision-making in churn prevention and crew scheduling
title_sort data driven decision making in churn prevention and crew scheduling
topic Entscheidungsfindung (DE-588)4113446-1 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Prozessoptimierung (DE-588)4176074-8 gnd
Datenanalyse (DE-588)4123037-1 gnd
topic_facet Entscheidungsfindung
Maschinelles Lernen
Prozessoptimierung
Datenanalyse
Hochschulschrift
url http://deposit.dnb.de/cgi-bin/dokserv?id=4365081a32134479a7b522f20ea11003&prov=M&dok_var=1&dok_ext=htm
https://d-nb.info/1250593840/04
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034221382&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT gattermannitscherttheresa datadrivendecisionmakinginchurnpreventionandcrewscheduling
AT logosverlagberlin datadrivendecisionmakinginchurnpreventionandcrewscheduling