Machine learning on commodity tiny devices theory and practice

"This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. This book presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization, and hardware-level instruction acceleration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Song, Guo ca. 20./21. Jh (VerfasserIn), Zhou, Qihua (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton ; London ; New York CRC Press, Taylor & Francis Group 2023
Ausgabe:First edition
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV048879325
003 DE-604
005 20240227
007 t|
008 230328s2023 xxua||| |||| 00||| eng d
020 |a 9781032374239  |c hbk  |9 978-1-03-237423-9 
020 |a 9781032374260  |c pbk  |9 978-1-03-237426-0 
020 |z 9781032374239  |c hbk  |9 978-1-032-37423-9 
020 |z 9781032374260  |c pbk  |9 978-1-032-37426-0 
035 |a (OCoLC)1345268863 
035 |a (DE-599)BVBBV048879325 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxu  |c XD-US  |a xxk  |c XA-GB 
049 |a DE-29T  |a DE-521 
082 0 |a 004.16  |2 23 
084 |a ST 302  |0 (DE-625)143652:  |2 rvk 
100 1 |a Song, Guo  |d ca. 20./21. Jh.  |e Verfasser  |0 (DE-588)1252101171  |4 aut 
245 1 0 |a Machine learning on commodity tiny devices  |b theory and practice  |c Song Guo and Qihua Zhou 
250 |a First edition 
264 1 |a Boca Raton ; London ; New York  |b CRC Press, Taylor & Francis Group  |c 2023 
300 |a xvii, 249 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Includes bibliographical references (page 187-245) and index 
520 3 |a "This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. This book presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization, and hardware-level instruction acceleration. Analyzing the limitations of conventional in-cloud computing would reveal that on-device learning is a promising research direction to meet the requirements of edge intelligence applications. As to the cutting-edge research of TinyML, implementing a high-efficiency learning framework and enabling system-level acceleration is one of the most fundamental issues. This book presents a comprehensive discussion of the latest research progress and provides system-level insights on designing TinyML frameworks, including neural network design, training algorithm optimization and domain-specific hardware acceleration. It identifies the main challenges when deploying TinyML tasks in the real world and guides the researchers to deploy a reliable learning system. This book will be of interest to students and scholars in the field of edge intelligence, especially to those with sufficient professional Edge AI skills. It will also be an excellent guide for researchers to implement high-performance TinyML systems"-- 
653 0 |a Embedded computer systems 
653 0 |a Machine learning 
700 1 |a Zhou, Qihua  |e Verfasser  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-003-34022-5 
259 |a 1 
943 1 |a oai:aleph.bib-bvb.de:BVB01-034144094 

Datensatz im Suchindex

_version_ 1819314390676013056
any_adam_object
author Song, Guo ca. 20./21. Jh
Zhou, Qihua
author_GND (DE-588)1252101171
author_facet Song, Guo ca. 20./21. Jh
Zhou, Qihua
author_role aut
aut
author_sort Song, Guo ca. 20./21. Jh
author_variant g s gs
q z qz
building Verbundindex
bvnumber BV048879325
classification_rvk ST 302
ctrlnum (OCoLC)1345268863
(DE-599)BVBBV048879325
dewey-full 004.16
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 004 - Computer science
dewey-raw 004.16
dewey-search 004.16
dewey-sort 14.16
dewey-tens 000 - Computer science, information, general works
discipline Informatik
edition First edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02768nam a2200421 c 4500</leader><controlfield tag="001">BV048879325</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240227 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">230328s2023 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781032374239</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-03-237423-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781032374260</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-03-237426-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781032374239</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-032-37423-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781032374260</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-032-37426-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1345268863</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048879325</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.16</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Guo</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1252101171</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning on commodity tiny devices</subfield><subfield code="b">theory and practice</subfield><subfield code="c">Song Guo and Qihua Zhou</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press, Taylor &amp; Francis Group</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 249 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (page 187-245) and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. This book presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization, and hardware-level instruction acceleration. Analyzing the limitations of conventional in-cloud computing would reveal that on-device learning is a promising research direction to meet the requirements of edge intelligence applications. As to the cutting-edge research of TinyML, implementing a high-efficiency learning framework and enabling system-level acceleration is one of the most fundamental issues. This book presents a comprehensive discussion of the latest research progress and provides system-level insights on designing TinyML frameworks, including neural network design, training algorithm optimization and domain-specific hardware acceleration. It identifies the main challenges when deploying TinyML tasks in the real world and guides the researchers to deploy a reliable learning system. This book will be of interest to students and scholars in the field of edge intelligence, especially to those with sufficient professional Edge AI skills. It will also be an excellent guide for researchers to implement high-performance TinyML systems"--</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Embedded computer systems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Qihua</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-003-34022-5</subfield></datafield><datafield tag="259" ind1=" " ind2=" "><subfield code="a">1</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034144094</subfield></datafield></record></collection>
id DE-604.BV048879325
illustrated Illustrated
indexdate 2024-12-24T09:43:27Z
institution BVB
isbn 9781032374239
9781032374260
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034144094
oclc_num 1345268863
open_access_boolean
owner DE-29T
DE-521
owner_facet DE-29T
DE-521
physical xvii, 249 Seiten Illustrationen, Diagramme
publishDate 2023
publishDateSearch 2023
publishDateSort 2023
publisher CRC Press, Taylor & Francis Group
record_format marc
spelling Song, Guo ca. 20./21. Jh. Verfasser (DE-588)1252101171 aut
Machine learning on commodity tiny devices theory and practice Song Guo and Qihua Zhou
First edition
Boca Raton ; London ; New York CRC Press, Taylor & Francis Group 2023
xvii, 249 Seiten Illustrationen, Diagramme
txt rdacontent
n rdamedia
nc rdacarrier
Includes bibliographical references (page 187-245) and index
"This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. This book presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization, and hardware-level instruction acceleration. Analyzing the limitations of conventional in-cloud computing would reveal that on-device learning is a promising research direction to meet the requirements of edge intelligence applications. As to the cutting-edge research of TinyML, implementing a high-efficiency learning framework and enabling system-level acceleration is one of the most fundamental issues. This book presents a comprehensive discussion of the latest research progress and provides system-level insights on designing TinyML frameworks, including neural network design, training algorithm optimization and domain-specific hardware acceleration. It identifies the main challenges when deploying TinyML tasks in the real world and guides the researchers to deploy a reliable learning system. This book will be of interest to students and scholars in the field of edge intelligence, especially to those with sufficient professional Edge AI skills. It will also be an excellent guide for researchers to implement high-performance TinyML systems"--
Embedded computer systems
Machine learning
Zhou, Qihua Verfasser aut
Erscheint auch als Online-Ausgabe 978-1-003-34022-5
1
spellingShingle Song, Guo ca. 20./21. Jh
Zhou, Qihua
Machine learning on commodity tiny devices theory and practice
title Machine learning on commodity tiny devices theory and practice
title_auth Machine learning on commodity tiny devices theory and practice
title_exact_search Machine learning on commodity tiny devices theory and practice
title_full Machine learning on commodity tiny devices theory and practice Song Guo and Qihua Zhou
title_fullStr Machine learning on commodity tiny devices theory and practice Song Guo and Qihua Zhou
title_full_unstemmed Machine learning on commodity tiny devices theory and practice Song Guo and Qihua Zhou
title_short Machine learning on commodity tiny devices
title_sort machine learning on commodity tiny devices theory and practice
title_sub theory and practice
work_keys_str_mv AT songguo machinelearningoncommoditytinydevicestheoryandpractice
AT zhouqihua machinelearningoncommoditytinydevicestheoryandpractice