Perfect and amicable numbers

"Perfect and amicable numbers, as well as a majority of classes of special numbers, have a long and rich history connected with the names of many famous mathematicians. This book gives a complete presentation of the theory of two classes of special numbers (perfect numbers and amicable numbers)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Deza, Elena 1961- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2023]
Schriftenreihe:Selected chapters of number theory: special numbers volume 2
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000001cb4500
001 BV048875002
003 DE-604
005 20240620
007 t
008 230324s2023 xxu |||| 00||| eng d
020 |a 9789811259623  |c hardcover  |9 978-981-125-962-3 
035 |a (OCoLC)1366290377 
035 |a (DE-599)KXP181542785X 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxu  |c XD-US 
049 |a DE-703 
082 0 |a 512.7/4  |2 23 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
100 1 |a Deza, Elena  |d 1961-  |e Verfasser  |0 (DE-588)1027553648  |4 aut 
245 1 0 |a Perfect and amicable numbers  |c Elena Deza, Moscow State Pedagogical University, Russia 
264 1 |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo  |b World Scientific  |c [2023] 
300 |a xxiv, 437 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Selected chapters of number theory: special numbers  |v volume 2 
500 |a Includes bibliographical references 
520 3 |a "Perfect and amicable numbers, as well as a majority of classes of special numbers, have a long and rich history connected with the names of many famous mathematicians. This book gives a complete presentation of the theory of two classes of special numbers (perfect numbers and amicable numbers) and give much of their properties, facts and theorems with full proofs of them. In the book, a complete detailed description of two classes of special numbers, perfect and amicable numbers, as well as their numerous analogue and generalizations, is given. Perfect and amicable numbers, as well as a majority of classes of special numbers, have a long and rich history connected with the names of many famous mathematicians. This is also an important part of the history of prime numbers, since the main formulas generated perfect and amicable pairs, depends on the good choice of one or several primes of special form. Nowadays, the theory of perfect and amicable numbers contains many interesting mathematical facts and theorems, as well as a lot of important computer algorithms needed for searching for new large elements of these two famous classes of special numbers. The mathematical part of this theory is closely connected with classical Arithmetics and Number Theory. It contains information about divisibility properties of perfect and amicable numbers, structure and properties of their generalizations and analogue (sociable numbers, multiperfect numbers, quasiperfect and quasiamicable numbers, etc.), their connections with other classes of special numbers, etc. Moreover, perfect and amicable numbers are involved in the search for new large primes, and have numerous connections with contemporary Cryptography. For these applications, one should study well-known deterministic and probabilistic primality tests, standard algorithms of integer factorization, the questions and open problems of Computational Complexity Theory"-- 
650 0 7 |a Vollkommene Zahl  |0 (DE-588)7683309-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Befreundete Zahl  |0 (DE-588)7684537-0  |2 gnd  |9 rswk-swf 
653 0 |a Perfect numbers 
653 0 |a Amicable numbers 
689 0 0 |a Vollkommene Zahl  |0 (DE-588)7683309-4  |D s 
689 0 1 |a Befreundete Zahl  |0 (DE-588)7684537-0  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-981-125-963-0 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-981-125-964-7 
830 0 |a Selected chapters of number theory: special numbers  |v volume 2  |w (DE-604)BV047513069  |9 2 
856 4 2 |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034139842&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 

Datensatz im Suchindex

_version_ 1805078111745736704
adam_text Contents Preface vii About the Author xv Notations xvii 1. Preliminaries 1 Divisibility of Integers. 1 Modular Arithmetic . 8 Solution to Congruences. 13 Quadratic Residues, Legendre Symbol, and Jacobi Symbol. 19 1.5 Multiplicative Orders, Primitive Roots, and Indexes. 22 1.6 Continued Fractions and Their Applications. 25 1.1 1.2 1.3 1.4 2. Arithmetic Functions 2.1 2.2 2.3 2.4 2.5 2.6 35 Additive and Multiplicative Functions. 35 Floor Function and Its Relatives . 42 Mobius Function. 46 Euler’s Totient Function. 50 Prime Counting Functions. 59 Divisor Functions. 86 xxiii Perfect and Amicable Numbers xxiv 3. Perfect Numbers 107 History of the Question . 107 Divisor Function and PerfectNumbers. 119 Properties of Perfect Numbers. 132 Search for Perfect Numbers. 155 Perfect Numbers in the Family of Special Numbers. 176 3.6 Open Problems. 217 3.1 3.2 3.3 3.4 3.5 4. Amicable Numbers 4.1 4.2 4.3 4.4 4.5 4.6 5. Generalizations and Analogue 5.1 5.2 5.3 5.4 5.5 5.6 229 History of the Question . 229 Divisor Function and AmicableNumbers. 238 Properties of Amicable Numbers. 258 Search for Amicable Numbers. 268 Amicable Numbers in the Family of Special Numbers. 280 Open Problems. 289 299 History of the Question . 299 Relatives of Perfect Numbers. 305 Relatives of Amicable Numbers. 333 Sociable Numbers. 345 Search for Numbers Under Consideration .354 Open Problems. 365 6. Zoo of Numbers 371 7. Mini Dictionary 383 8. Exercises 393 Bibliography 419 Index 433
adam_txt Contents Preface vii About the Author xv Notations xvii 1. Preliminaries 1 Divisibility of Integers. 1 Modular Arithmetic . 8 Solution to Congruences. 13 Quadratic Residues, Legendre Symbol, and Jacobi Symbol. 19 1.5 Multiplicative Orders, Primitive Roots, and Indexes. 22 1.6 Continued Fractions and Their Applications. 25 1.1 1.2 1.3 1.4 2. Arithmetic Functions 2.1 2.2 2.3 2.4 2.5 2.6 35 Additive and Multiplicative Functions. 35 Floor Function and Its Relatives . 42 Mobius Function. 46 Euler’s Totient Function. 50 Prime Counting Functions. 59 Divisor Functions. 86 xxiii Perfect and Amicable Numbers xxiv 3. Perfect Numbers 107 History of the Question . 107 Divisor Function and PerfectNumbers. 119 Properties of Perfect Numbers. 132 Search for Perfect Numbers. 155 Perfect Numbers in the Family of Special Numbers. 176 3.6 Open Problems. 217 3.1 3.2 3.3 3.4 3.5 4. Amicable Numbers 4.1 4.2 4.3 4.4 4.5 4.6 5. Generalizations and Analogue 5.1 5.2 5.3 5.4 5.5 5.6 229 History of the Question . 229 Divisor Function and AmicableNumbers. 238 Properties of Amicable Numbers. 258 Search for Amicable Numbers. 268 Amicable Numbers in the Family of Special Numbers. 280 Open Problems. 289 299 History of the Question . 299 Relatives of Perfect Numbers. 305 Relatives of Amicable Numbers. 333 Sociable Numbers. 345 Search for Numbers Under Consideration .354 Open Problems. 365 6. Zoo of Numbers 371 7. Mini Dictionary 383 8. Exercises 393 Bibliography 419 Index 433
any_adam_object 1
any_adam_object_boolean 1
author Deza, Elena 1961-
author_GND (DE-588)1027553648
author_facet Deza, Elena 1961-
author_role aut
author_sort Deza, Elena 1961-
author_variant e d ed
building Verbundindex
bvnumber BV048875002
classification_rvk SK 180
ctrlnum (OCoLC)1366290377
(DE-599)KXP181542785X
dewey-full 512.7/4
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.7/4
dewey-search 512.7/4
dewey-sort 3512.7 14
dewey-tens 510 - Mathematics
discipline Mathematik
discipline_str_mv Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001cb4500</leader><controlfield tag="001">BV048875002</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240620</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230324s2023 xxu |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811259623</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-981-125-962-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1366290377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP181542785X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deza, Elena</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027553648</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perfect and amicable numbers</subfield><subfield code="c">Elena Deza, Moscow State Pedagogical University, Russia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiv, 437 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Selected chapters of number theory: special numbers</subfield><subfield code="v">volume 2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Perfect and amicable numbers, as well as a majority of classes of special numbers, have a long and rich history connected with the names of many famous mathematicians. This book gives a complete presentation of the theory of two classes of special numbers (perfect numbers and amicable numbers) and give much of their properties, facts and theorems with full proofs of them. In the book, a complete detailed description of two classes of special numbers, perfect and amicable numbers, as well as their numerous analogue and generalizations, is given. Perfect and amicable numbers, as well as a majority of classes of special numbers, have a long and rich history connected with the names of many famous mathematicians. This is also an important part of the history of prime numbers, since the main formulas generated perfect and amicable pairs, depends on the good choice of one or several primes of special form. Nowadays, the theory of perfect and amicable numbers contains many interesting mathematical facts and theorems, as well as a lot of important computer algorithms needed for searching for new large elements of these two famous classes of special numbers. The mathematical part of this theory is closely connected with classical Arithmetics and Number Theory. It contains information about divisibility properties of perfect and amicable numbers, structure and properties of their generalizations and analogue (sociable numbers, multiperfect numbers, quasiperfect and quasiamicable numbers, etc.), their connections with other classes of special numbers, etc. Moreover, perfect and amicable numbers are involved in the search for new large primes, and have numerous connections with contemporary Cryptography. For these applications, one should study well-known deterministic and probabilistic primality tests, standard algorithms of integer factorization, the questions and open problems of Computational Complexity Theory"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vollkommene Zahl</subfield><subfield code="0">(DE-588)7683309-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Befreundete Zahl</subfield><subfield code="0">(DE-588)7684537-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Perfect numbers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Amicable numbers</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vollkommene Zahl</subfield><subfield code="0">(DE-588)7683309-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Befreundete Zahl</subfield><subfield code="0">(DE-588)7684537-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-125-963-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-125-964-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Selected chapters of number theory: special numbers</subfield><subfield code="v">volume 2</subfield><subfield code="w">(DE-604)BV047513069</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=034139842&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection>
id DE-604.BV048875002
illustrated Not Illustrated
index_date 2024-07-03T21:44:47Z
indexdate 2024-07-20T06:23:53Z
institution BVB
isbn 9789811259623
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034139842
oclc_num 1366290377
open_access_boolean
owner DE-703
owner_facet DE-703
physical xxiv, 437 Seiten
publishDate 2023
publishDateSearch 2023
publishDateSort 2023
publisher World Scientific
record_format marc
series Selected chapters of number theory: special numbers
series2 Selected chapters of number theory: special numbers
spelling Deza, Elena 1961- Verfasser (DE-588)1027553648 aut
Perfect and amicable numbers Elena Deza, Moscow State Pedagogical University, Russia
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2023]
xxiv, 437 Seiten
txt rdacontent
n rdamedia
nc rdacarrier
Selected chapters of number theory: special numbers volume 2
Includes bibliographical references
"Perfect and amicable numbers, as well as a majority of classes of special numbers, have a long and rich history connected with the names of many famous mathematicians. This book gives a complete presentation of the theory of two classes of special numbers (perfect numbers and amicable numbers) and give much of their properties, facts and theorems with full proofs of them. In the book, a complete detailed description of two classes of special numbers, perfect and amicable numbers, as well as their numerous analogue and generalizations, is given. Perfect and amicable numbers, as well as a majority of classes of special numbers, have a long and rich history connected with the names of many famous mathematicians. This is also an important part of the history of prime numbers, since the main formulas generated perfect and amicable pairs, depends on the good choice of one or several primes of special form. Nowadays, the theory of perfect and amicable numbers contains many interesting mathematical facts and theorems, as well as a lot of important computer algorithms needed for searching for new large elements of these two famous classes of special numbers. The mathematical part of this theory is closely connected with classical Arithmetics and Number Theory. It contains information about divisibility properties of perfect and amicable numbers, structure and properties of their generalizations and analogue (sociable numbers, multiperfect numbers, quasiperfect and quasiamicable numbers, etc.), their connections with other classes of special numbers, etc. Moreover, perfect and amicable numbers are involved in the search for new large primes, and have numerous connections with contemporary Cryptography. For these applications, one should study well-known deterministic and probabilistic primality tests, standard algorithms of integer factorization, the questions and open problems of Computational Complexity Theory"--
Vollkommene Zahl (DE-588)7683309-4 gnd rswk-swf
Befreundete Zahl (DE-588)7684537-0 gnd rswk-swf
Perfect numbers
Amicable numbers
Vollkommene Zahl (DE-588)7683309-4 s
Befreundete Zahl (DE-588)7684537-0 s
DE-604
Erscheint auch als Online-Ausgabe 978-981-125-963-0
Erscheint auch als Online-Ausgabe 978-981-125-964-7
Selected chapters of number theory: special numbers volume 2 (DE-604)BV047513069 2
Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034139842&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Deza, Elena 1961-
Perfect and amicable numbers
Selected chapters of number theory: special numbers
Vollkommene Zahl (DE-588)7683309-4 gnd
Befreundete Zahl (DE-588)7684537-0 gnd
subject_GND (DE-588)7683309-4
(DE-588)7684537-0
title Perfect and amicable numbers
title_auth Perfect and amicable numbers
title_exact_search Perfect and amicable numbers
title_exact_search_txtP Perfect and amicable numbers
title_full Perfect and amicable numbers Elena Deza, Moscow State Pedagogical University, Russia
title_fullStr Perfect and amicable numbers Elena Deza, Moscow State Pedagogical University, Russia
title_full_unstemmed Perfect and amicable numbers Elena Deza, Moscow State Pedagogical University, Russia
title_short Perfect and amicable numbers
title_sort perfect and amicable numbers
topic Vollkommene Zahl (DE-588)7683309-4 gnd
Befreundete Zahl (DE-588)7684537-0 gnd
topic_facet Vollkommene Zahl
Befreundete Zahl
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034139842&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV047513069
work_keys_str_mv AT dezaelena perfectandamicablenumbers