2D nanomaterials for CO2 conversion into chemicals and fuels
Since the discovery of graphene, two-dimensional nanomaterials including Transition metal dichalcogenides (TMDCs), Hexagonal Boron Nitride (hBN), non-layered compounds, black phosphorous, and Xenes with large lateral dimensions, have emerged as promising candidates for heterogenous electrocatalysis...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Royal Society of Chemistry
[2022]
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the discovery of graphene, two-dimensional nanomaterials including Transition metal dichalcogenides (TMDCs), Hexagonal Boron Nitride (hBN), non-layered compounds, black phosphorous, and Xenes with large lateral dimensions, have emerged as promising candidates for heterogenous electrocatalysis owing to their exceptional physical, chemical, and electronic properties. The tremendous opportunities of using 2D nanomaterials in electrochemical CO2 reduction arises from their unique properties and vast number of applications. Covering the fundamentals, properties, and applications, all aspects of 2D nanomaterial composites within carbon dioxide conversion are discussed. The industrial scale-up and new challenges that exist in the field of electrochemical reduction of carbon dioxide will also be presented. With chapters written by internationally recognized researchers, this state-of-the-art overview will serve the growing interest amongst academic and industrial researchers in understanding 2D nanomaterials composites, their hidden interfaces and nanoscale dispersion of the metal oxide with nanocomposites for specific uses in carbon dioxide conversion to chemicals for fuel applications. This book will be of interest to graduate students and researchers in materials science, energy, and environmental science, as well as those in industry |
---|---|
Beschreibung: | A Fundamental Approach Towards Carbon Dioxide Conversion to Chemicals and Fuels: Current Trends for CO2 Utilization Technologies;Synthesis and Characterization of Two Dimensional Materials;Synthesis of Two-dimensional Hybrid Materials, Unique Properties, and Challenges;CO2 Conversion to Chemicals and Fuel Cells Using Renewable Energy Sources;Two-dimensional Metal Oxide Nanomaterials for Electrochemical Conversion of CO2 into Energy-rich Chemicals;Two-dimensional Based Hybrid Materials for CO2-to-fuels Electrochemical Conversion CO2 Process;Two-dimensional Nanomaterials Design and Reactor Engineering of Different Methods for CO2 Electrochemical Conversion Process;Photoelectrochemical CO2 Conversion Through the Utilization of Non-oxide Two-dimensional Nanomaterials;Photocatalytic Conversion of CO2 into Energy-rich Chemicals by Two-dimensional Nanomaterials;Two-dimensional Based Hybrid Materials for Photocatalytic Conversion of CO2 into Hydrocarbon Fuels;Catalytic Thermal Conversion of CO2 to Fuels Using Two-dimensional Nanomaterials;Oxidative Dehydrogenation of Ethane to Ethylene Over Two-dimensional Nanomaterials Catalysts Using CO2;A Comparative Study of 0D, 1D, and 2D Nanocatalysts Towards CO2 Conversion;CO2 Capture and Conversion Using Different Renewable Sources;CO2 Capture by Functionalized Two-dimensional Nanomaterials; Conversion of CO2 into Energy Dense Chemicals and the Commercialization Using Two-dimensional Nanomaterials as Catalysts |
Beschreibung: | xxi, 445 Seiten Illustrationen, Diagramme 857 grams |
ISBN: | 9781839163111 |