Data visualization with Python and JavaScript scrape, clean, explore, and transform your data

Chapter 2. A Language-Learning Bridge Between Python and JavaScript -- Similarities and Differences -- Interacting with the Code -- Python -- JavaScript -- Basic Bridge Work -- Style Guidelines, PEP 8, and use strict -- CamelCase Versus Underscore -- Importing Modules, Including Scripts -- JavaScrip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dale, Kyran (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Beijing O'Reilly [2023]
Ausgabe:Second edition
Online-Zugang:DE-1050
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV048833833
003 DE-604
005 20230320
007 cr|uuu---uuuuu
008 230227s2023 xx o|||| 00||| eng d
020 |a 9781098111823  |9 978-1-098-11182-3 
035 |a (OCoLC)1371323763 
035 |a (DE-599)BVBBV048833833 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-1050 
100 1 |a Dale, Kyran  |e Verfasser  |0 (DE-588)1112956220  |4 aut 
245 1 0 |a Data visualization with Python and JavaScript  |b scrape, clean, explore, and transform your data  |c Kryan Dale 
250 |a Second edition 
264 1 |a Beijing  |b O'Reilly  |c [2023] 
300 |a 1 Online-Ressource (xxxvi, 529 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
505 8 |a Cover -- Copyright -- Table of Contents -- Preface -- The Second Edition -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Second Edition -- Introduction -- Who This Book Is For -- Minimal Requirements to Use This Book -- Why Python and JavaScript? -- Why Not Python in the Browser? -- Why Python for Data Processing -- Python's Getting Better All the Time -- What You'll Learn -- The Choice of Libraries -- Preliminaries -- The Dataviz Toolchain -- 1. Scraping Data with Scrapy -- 2. Cleaning Data with pandas 
505 8 |a 3. Exploring Data with pandas and Matplotlib -- 4. Delivering Your Data with Flask -- 5. Transforming Data into Interactive Visualizations with Plotly and D3 -- Smaller Libraries -- Using the Book -- A Little Bit of Context -- Summary -- Recommended Books -- Part I. Basic Toolkit -- Chapter 1. Development Setup -- The Accompanying Code -- Python -- Anaconda -- Installing Extra Libraries -- Virtual Environments -- JavaScript -- Content Delivery Networks -- Installing Libraries Locally -- Databases -- Getting MongoDB Up and Running -- Easy MongoDB with Docker -- Integrated Development Environments 
505 8 |a Data Containers: dicts, objects, lists, Arrays -- Functions -- Iterating: for Loops and Functional Alternatives -- Conditionals: if, else, elif, switch -- File Input and Output -- Classes and Prototypes -- Differences in Practice -- Method Chaining -- Enumerating a List -- Tuple Unpacking -- Collections -- Underscore -- Functional Array Methods and List Comprehensions -- Map, Reduce, and Filter with Python's Lambdas -- JavaScript Closures and the Module Pattern -- A Cheat Sheet -- Summary -- Chapter 3. Reading and Writing Data with Python -- Easy Does It -- Passing Data Around 
505 8 |a Working with System Files -- CSV, TSV, and Row-Column Data Formats -- JSON -- Dealing with Dates and Times -- SQL -- Creating the Database Engine -- Defining the Database Tables -- Adding Instances with a Session -- Querying the Database -- Easier SQL with Dataset -- MongoDB -- Dealing with Dates, Times, and Complex Data -- Summary -- Chapter 4. Webdev 101 -- The Big Picture -- Single-Page Apps -- Tooling Up -- The Myth of IDEs, Frameworks, and Tools -- A Text-Editing Workhorse -- Browser with Development Tools -- Terminal or Command Prompt -- Building a Web Page -- Serving Pages with HTTP 
520 |a Chapter 2. A Language-Learning Bridge Between Python and JavaScript -- Similarities and Differences -- Interacting with the Code -- Python -- JavaScript -- Basic Bridge Work -- Style Guidelines, PEP 8, and use strict -- CamelCase Versus Underscore -- Importing Modules, Including Scripts -- JavaScript Modules -- Keeping Your Namespaces Clean -- Outputting "Hello World!" -- Simple Data Processing -- String Construction -- Significant Whitespace Versus Curly Brackets -- Comments and Doc-Strings -- Declaring Variables Using let or var -- Strings and Numbers -- Booleans 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-1-098-11187-8 
912 |a ZDB-30-PQE 
943 1 |a oai:aleph.bib-bvb.de:BVB01-034099375 
966 e |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=30285893  |l DE-1050  |p ZDB-30-PQE  |q FHD01_PQE_Kauf  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819314305706754048
any_adam_object
author Dale, Kyran
author_GND (DE-588)1112956220
author_facet Dale, Kyran
author_role aut
author_sort Dale, Kyran
author_variant k d kd
building Verbundindex
bvnumber BV048833833
collection ZDB-30-PQE
contents Cover -- Copyright -- Table of Contents -- Preface -- The Second Edition -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Second Edition -- Introduction -- Who This Book Is For -- Minimal Requirements to Use This Book -- Why Python and JavaScript? -- Why Not Python in the Browser? -- Why Python for Data Processing -- Python's Getting Better All the Time -- What You'll Learn -- The Choice of Libraries -- Preliminaries -- The Dataviz Toolchain -- 1. Scraping Data with Scrapy -- 2. Cleaning Data with pandas
3. Exploring Data with pandas and Matplotlib -- 4. Delivering Your Data with Flask -- 5. Transforming Data into Interactive Visualizations with Plotly and D3 -- Smaller Libraries -- Using the Book -- A Little Bit of Context -- Summary -- Recommended Books -- Part I. Basic Toolkit -- Chapter 1. Development Setup -- The Accompanying Code -- Python -- Anaconda -- Installing Extra Libraries -- Virtual Environments -- JavaScript -- Content Delivery Networks -- Installing Libraries Locally -- Databases -- Getting MongoDB Up and Running -- Easy MongoDB with Docker -- Integrated Development Environments
Data Containers: dicts, objects, lists, Arrays -- Functions -- Iterating: for Loops and Functional Alternatives -- Conditionals: if, else, elif, switch -- File Input and Output -- Classes and Prototypes -- Differences in Practice -- Method Chaining -- Enumerating a List -- Tuple Unpacking -- Collections -- Underscore -- Functional Array Methods and List Comprehensions -- Map, Reduce, and Filter with Python's Lambdas -- JavaScript Closures and the Module Pattern -- A Cheat Sheet -- Summary -- Chapter 3. Reading and Writing Data with Python -- Easy Does It -- Passing Data Around
Working with System Files -- CSV, TSV, and Row-Column Data Formats -- JSON -- Dealing with Dates and Times -- SQL -- Creating the Database Engine -- Defining the Database Tables -- Adding Instances with a Session -- Querying the Database -- Easier SQL with Dataset -- MongoDB -- Dealing with Dates, Times, and Complex Data -- Summary -- Chapter 4. Webdev 101 -- The Big Picture -- Single-Page Apps -- Tooling Up -- The Myth of IDEs, Frameworks, and Tools -- A Text-Editing Workhorse -- Browser with Development Tools -- Terminal or Command Prompt -- Building a Web Page -- Serving Pages with HTTP
ctrlnum (OCoLC)1371323763
(DE-599)BVBBV048833833
edition Second edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04112nam a2200361 c 4500</leader><controlfield tag="001">BV048833833</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230320 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230227s2023 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098111823</subfield><subfield code="9">978-1-098-11182-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1371323763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048833833</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dale, Kyran</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1112956220</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data visualization with Python and JavaScript</subfield><subfield code="b">scrape, clean, explore, and transform your data</subfield><subfield code="c">Kryan Dale</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxxvi, 529 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Copyright -- Table of Contents -- Preface -- The Second Edition -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Second Edition -- Introduction -- Who This Book Is For -- Minimal Requirements to Use This Book -- Why Python and JavaScript? -- Why Not Python in the Browser? -- Why Python for Data Processing -- Python's Getting Better All the Time -- What You'll Learn -- The Choice of Libraries -- Preliminaries -- The Dataviz Toolchain -- 1. Scraping Data with Scrapy -- 2. Cleaning Data with pandas</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Exploring Data with pandas and Matplotlib -- 4. Delivering Your Data with Flask -- 5. Transforming Data into Interactive Visualizations with Plotly and D3 -- Smaller Libraries -- Using the Book -- A Little Bit of Context -- Summary -- Recommended Books -- Part I. Basic Toolkit -- Chapter 1. Development Setup -- The Accompanying Code -- Python -- Anaconda -- Installing Extra Libraries -- Virtual Environments -- JavaScript -- Content Delivery Networks -- Installing Libraries Locally -- Databases -- Getting MongoDB Up and Running -- Easy MongoDB with Docker -- Integrated Development Environments</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Data Containers: dicts, objects, lists, Arrays -- Functions -- Iterating: for Loops and Functional Alternatives -- Conditionals: if, else, elif, switch -- File Input and Output -- Classes and Prototypes -- Differences in Practice -- Method Chaining -- Enumerating a List -- Tuple Unpacking -- Collections -- Underscore -- Functional Array Methods and List Comprehensions -- Map, Reduce, and Filter with Python's Lambdas -- JavaScript Closures and the Module Pattern -- A Cheat Sheet -- Summary -- Chapter 3. Reading and Writing Data with Python -- Easy Does It -- Passing Data Around</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Working with System Files -- CSV, TSV, and Row-Column Data Formats -- JSON -- Dealing with Dates and Times -- SQL -- Creating the Database Engine -- Defining the Database Tables -- Adding Instances with a Session -- Querying the Database -- Easier SQL with Dataset -- MongoDB -- Dealing with Dates, Times, and Complex Data -- Summary -- Chapter 4. Webdev 101 -- The Big Picture -- Single-Page Apps -- Tooling Up -- The Myth of IDEs, Frameworks, and Tools -- A Text-Editing Workhorse -- Browser with Development Tools -- Terminal or Command Prompt -- Building a Web Page -- Serving Pages with HTTP</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Chapter 2. A Language-Learning Bridge Between Python and JavaScript -- Similarities and Differences -- Interacting with the Code -- Python -- JavaScript -- Basic Bridge Work -- Style Guidelines, PEP 8, and use strict -- CamelCase Versus Underscore -- Importing Modules, Including Scripts -- JavaScript Modules -- Keeping Your Namespaces Clean -- Outputting "Hello World!" -- Simple Data Processing -- String Construction -- Significant Whitespace Versus Curly Brackets -- Comments and Doc-Strings -- Declaring Variables Using let or var -- Strings and Numbers -- Booleans</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-098-11187-8</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034099375</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=30285893</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV048833833
illustrated Not Illustrated
indexdate 2024-12-24T09:42:06Z
institution BVB
isbn 9781098111823
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034099375
oclc_num 1371323763
open_access_boolean
owner DE-1050
owner_facet DE-1050
physical 1 Online-Ressource (xxxvi, 529 Seiten)
psigel ZDB-30-PQE
ZDB-30-PQE FHD01_PQE_Kauf
publishDate 2023
publishDateSearch 2023
publishDateSort 2023
publisher O'Reilly
record_format marc
spelling Dale, Kyran Verfasser (DE-588)1112956220 aut
Data visualization with Python and JavaScript scrape, clean, explore, and transform your data Kryan Dale
Second edition
Beijing O'Reilly [2023]
1 Online-Ressource (xxxvi, 529 Seiten)
txt rdacontent
c rdamedia
cr rdacarrier
Cover -- Copyright -- Table of Contents -- Preface -- The Second Edition -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Second Edition -- Introduction -- Who This Book Is For -- Minimal Requirements to Use This Book -- Why Python and JavaScript? -- Why Not Python in the Browser? -- Why Python for Data Processing -- Python's Getting Better All the Time -- What You'll Learn -- The Choice of Libraries -- Preliminaries -- The Dataviz Toolchain -- 1. Scraping Data with Scrapy -- 2. Cleaning Data with pandas
3. Exploring Data with pandas and Matplotlib -- 4. Delivering Your Data with Flask -- 5. Transforming Data into Interactive Visualizations with Plotly and D3 -- Smaller Libraries -- Using the Book -- A Little Bit of Context -- Summary -- Recommended Books -- Part I. Basic Toolkit -- Chapter 1. Development Setup -- The Accompanying Code -- Python -- Anaconda -- Installing Extra Libraries -- Virtual Environments -- JavaScript -- Content Delivery Networks -- Installing Libraries Locally -- Databases -- Getting MongoDB Up and Running -- Easy MongoDB with Docker -- Integrated Development Environments
Data Containers: dicts, objects, lists, Arrays -- Functions -- Iterating: for Loops and Functional Alternatives -- Conditionals: if, else, elif, switch -- File Input and Output -- Classes and Prototypes -- Differences in Practice -- Method Chaining -- Enumerating a List -- Tuple Unpacking -- Collections -- Underscore -- Functional Array Methods and List Comprehensions -- Map, Reduce, and Filter with Python's Lambdas -- JavaScript Closures and the Module Pattern -- A Cheat Sheet -- Summary -- Chapter 3. Reading and Writing Data with Python -- Easy Does It -- Passing Data Around
Working with System Files -- CSV, TSV, and Row-Column Data Formats -- JSON -- Dealing with Dates and Times -- SQL -- Creating the Database Engine -- Defining the Database Tables -- Adding Instances with a Session -- Querying the Database -- Easier SQL with Dataset -- MongoDB -- Dealing with Dates, Times, and Complex Data -- Summary -- Chapter 4. Webdev 101 -- The Big Picture -- Single-Page Apps -- Tooling Up -- The Myth of IDEs, Frameworks, and Tools -- A Text-Editing Workhorse -- Browser with Development Tools -- Terminal or Command Prompt -- Building a Web Page -- Serving Pages with HTTP
Chapter 2. A Language-Learning Bridge Between Python and JavaScript -- Similarities and Differences -- Interacting with the Code -- Python -- JavaScript -- Basic Bridge Work -- Style Guidelines, PEP 8, and use strict -- CamelCase Versus Underscore -- Importing Modules, Including Scripts -- JavaScript Modules -- Keeping Your Namespaces Clean -- Outputting "Hello World!" -- Simple Data Processing -- String Construction -- Significant Whitespace Versus Curly Brackets -- Comments and Doc-Strings -- Declaring Variables Using let or var -- Strings and Numbers -- Booleans
Erscheint auch als Druck-Ausgabe 978-1-098-11187-8
spellingShingle Dale, Kyran
Data visualization with Python and JavaScript scrape, clean, explore, and transform your data
Cover -- Copyright -- Table of Contents -- Preface -- The Second Edition -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Second Edition -- Introduction -- Who This Book Is For -- Minimal Requirements to Use This Book -- Why Python and JavaScript? -- Why Not Python in the Browser? -- Why Python for Data Processing -- Python's Getting Better All the Time -- What You'll Learn -- The Choice of Libraries -- Preliminaries -- The Dataviz Toolchain -- 1. Scraping Data with Scrapy -- 2. Cleaning Data with pandas
3. Exploring Data with pandas and Matplotlib -- 4. Delivering Your Data with Flask -- 5. Transforming Data into Interactive Visualizations with Plotly and D3 -- Smaller Libraries -- Using the Book -- A Little Bit of Context -- Summary -- Recommended Books -- Part I. Basic Toolkit -- Chapter 1. Development Setup -- The Accompanying Code -- Python -- Anaconda -- Installing Extra Libraries -- Virtual Environments -- JavaScript -- Content Delivery Networks -- Installing Libraries Locally -- Databases -- Getting MongoDB Up and Running -- Easy MongoDB with Docker -- Integrated Development Environments
Data Containers: dicts, objects, lists, Arrays -- Functions -- Iterating: for Loops and Functional Alternatives -- Conditionals: if, else, elif, switch -- File Input and Output -- Classes and Prototypes -- Differences in Practice -- Method Chaining -- Enumerating a List -- Tuple Unpacking -- Collections -- Underscore -- Functional Array Methods and List Comprehensions -- Map, Reduce, and Filter with Python's Lambdas -- JavaScript Closures and the Module Pattern -- A Cheat Sheet -- Summary -- Chapter 3. Reading and Writing Data with Python -- Easy Does It -- Passing Data Around
Working with System Files -- CSV, TSV, and Row-Column Data Formats -- JSON -- Dealing with Dates and Times -- SQL -- Creating the Database Engine -- Defining the Database Tables -- Adding Instances with a Session -- Querying the Database -- Easier SQL with Dataset -- MongoDB -- Dealing with Dates, Times, and Complex Data -- Summary -- Chapter 4. Webdev 101 -- The Big Picture -- Single-Page Apps -- Tooling Up -- The Myth of IDEs, Frameworks, and Tools -- A Text-Editing Workhorse -- Browser with Development Tools -- Terminal or Command Prompt -- Building a Web Page -- Serving Pages with HTTP
title Data visualization with Python and JavaScript scrape, clean, explore, and transform your data
title_auth Data visualization with Python and JavaScript scrape, clean, explore, and transform your data
title_exact_search Data visualization with Python and JavaScript scrape, clean, explore, and transform your data
title_full Data visualization with Python and JavaScript scrape, clean, explore, and transform your data Kryan Dale
title_fullStr Data visualization with Python and JavaScript scrape, clean, explore, and transform your data Kryan Dale
title_full_unstemmed Data visualization with Python and JavaScript scrape, clean, explore, and transform your data Kryan Dale
title_short Data visualization with Python and JavaScript
title_sort data visualization with python and javascript scrape clean explore and transform your data
title_sub scrape, clean, explore, and transform your data
work_keys_str_mv AT dalekyran datavisualizationwithpythonandjavascriptscrapecleanexploreandtransformyourdata