Technology and Agribusiness How the Technology Is Impacting the Agribusiness

This book discusses the major problems in agribusiness and technologies that can be applied to solve and improve such issues. Agribusiness covers topics such as arable farming, dairy farming, fruits, vegetables, meat, etc. Each domain has different needs that can be addressed through smart agricultu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Grimblatt, Victor (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Aalborg River Publishers 2021
Ausgabe:1st ed
Schlagworte:
Online-Zugang:HWR01
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Intro
  • Series Editors
  • Amara Amara
  • IEEE CASS President
  • Yen-Kuang Chen
  • VP - Technical Activities, IEEE CASS
  • Yoshifumi Nishio
  • VP - Regional Activities and Membership,
  • Table of contents
  • Introduction
  • CHAPTER 01
  • IoT in the Agribusiness:Technology Tren
  • Alfredo Arnaud
  • Matías Miguez
  • Universidad Católica del Uruguay, Montev
  • RFID: Radio Frequency ID
  • RFID Technologies and Classification
  • RFID Tag Types (II)
  • Main (at the present) passive RFID frequ
  • RFID Mainstream
  • RFID Applications in the Agribusiness
  • RFID Tags for Animal ID
  • Localization &amp
  • Geolocalization
  • Connectivity
  • Uruguay
  • Traceability Within The Fish Industry
  • RFID in The Wood Industry
  • RFID Based Sensors (I)
  • RFID Based Sensors (II)
  • Application Example: Semi-active LF Temp
  • Objective - To Increase Reading Distance
  • Proposed Topology - Not Only For Sensors
  • Proposed Topology
  • ASIC Prototype and Measurements
  • IoT: Internet of Things
  • IoT in the Agribusiness
  • IoT Primary Market Is Still The Smart Ci
  • An IoT Technology Classification (I)
  • An IoT Technology Classification (II)
  • An IoT Technology Classification (III)
  • Single or Few Nodes... Using the TelCo
  • Multi-node Network Example
  • Geolocalization of Cattle... Using Farm Ar
  • IoT Example: Nursery Plants Monitoring
  • 3GPP Technologies
  • IoT Under 3GPP For The Agribusiness Appl
  • IoT Under 3GPP For The Agribusiness Appl
  • Trend: Satellite IoT... Game-changer
  • LoRa Based Direct Satellite Access
  • ISO 11784/11785 Compliant RFID Reader
  • The Reader (I)
  • The Reader (II)
  • Current Trend: RFID Reader -&gt
  • Beyond Tra
  • Current Trend: Bring the Data-Base to Th
  • Bring The Data-base to The Cattleyards (
  • Bring The Data-base to The Cattleyards (
  • FAN: Farm Area Network
  • Battery Powered Remote Telemetry Unit (R.
  • Battery Powered RTU for Ilegal Logging D
  • RTU Power Consumption Profile Along Time
  • Energy Consumption Measurements
  • Optimal Datagram Size
  • Energy Consumption Measurements Overview
  • Additional HW &amp
  • Communication Strategy (
  • Additional HW &amp
  • Communication Strategy (
  • Partial Conclusions (I)
  • Partial Conclusions (II)
  • DIEstro A 5µA IoT PLATFORM FOR CATTLE HE
  • AN IoT-BASED ELECTRONIC PRICE-TAG FOR FO
  • SMARTNOZZLE
  • CONCLUSIONS
  • CHAPTER 02
  • Fruit Sector in Chile
  • Álvaro Reyes
  • Universidad Santo Tomás, Santiago, Chile
  • Outline
  • Introduction (I)
  • Introduction (II)
  • Introduction (III)
  • Cultivated Area by Type of Farmers (Hect
  • Foreign Trade Fruit Sector (I)
  • Foreign Trade Fruit Sector (II)
  • 1. FRUIT PRODUCTION IN CHILE
  • Planted Area With Fruit Crops (Hectares)
  • Chilean Fruit Exports 2008-2018
  • 2. STRENGTHS
  • Strengths (I)
  • Strengths (II)
  • Strengths (III)
  • 3. CHALLENGES
  • Challenges (I)
  • Challenges (II)
  • Challenges (III)
  • Final Remarks
  • References
  • CHAPTER 03
  • Internet of Things for Data Driven Preci
  • Yosi Shacham Diamand
  • Tel Aviv University, Tel Aviv, Israel
  • 1. THE NEED FOR SENSING IN AGRICULTURE
  • Need for Sensing in Agriculture (I)
  • Need for Sensing in Agriculture (II)
  • Need for Sensing in Agriculture (III)
  • Need for Sensing in Agriculture (IV)
  • Need for Sensing in Agriculture (V)
  • Need for Sensing in Agriculture (VI)
  • 2. AVENUES FOR SMART AND PRECISION AGRIC
  • Avenues for Smart and Precision Agricult
  • Avenues for Smart and Precision Agricult
  • 3. SENSING IN AGRICULTURE
  • Sensing in agriculture: indirect sensing
  • Sensing in agriculture: direct sensing
  • Sensing in Agriculture: Functional Sensi
  • 4. THE DIGITAL VILLAGE
  • The Idea is to Generate Data
  • Site maps
  • Not far from the Himalaya
  • Rishikesh in the Himalayan foothills bes
  • The Ganges river at the Himalaya...
  • 5. OUR APPROACH
  • The Digital Village.
  • Goals
  • Motivation
  • Objectives
  • Deliverable
  • Novelty and Interdisciplinary Nature of
  • Approach
  • Possible Solutions
  • Our Approach (I)
  • Our Approach (II)
  • 6. METHODOLOGY
  • Methodology (I)
  • Methodology (II)
  • Methodology: Data acquisition (I)
  • Methodology: Data acquisition (II)
  • Methodology: Data acquisition (III)
  • Methodology: pre-deployment
  • Methodology: Data storage
  • Methodology: Data Analysis
  • Methodology
  • 7. FEASIBILITY
  • Pilot project
  • Feasibility
  • Feasibility Studies
  • AT The Rice Field in Punjab (I)
  • AT The Rice Field in Punjab (II)
  • AT The Rice Field in Punjab (III)
  • Feasibility Studies (I)
  • Feasibility Studies (II)
  • Feasibility Studies: Data Retrieval Plat
  • Feasibility Studies: Data Retrieval Plat
  • The Main Problem With Existing IoT Syste
  • Internet of Things (IoT) Networks: Proto
  • Internet of Things (IoT) Networks: Hybri
  • Internet of Things (IoT) Networks: Hybri
  • Internet of Things (IoT) Networks: Hybri
  • Internet of Things (IoT) Networks: Hybri
  • Internet of Things (IoT) Networks: Hybri
  • Rice Fields in Punjab
  • Rice Harvesting
  • Rice Collection
  • Rice Primary Storage
  • Future Plans
  • Conclusions
  • Map
  • CHAPTER 04
  • Improved IoT Capabilities for Agricultur
  • François Rivet
  • Université de Bordeaux, France
  • Guillaume Ferré
  • Université de Bordeaux, France
  • DCSS for IoT Everywhere Using
  • Guillaume Ferré
  • Université de Bordeaux, France
  • 1. INTRODUCTION
  • IoT Radio and Network links
  • IoT general system
  • LPWAN
  • Introduction - 25%
  • LEO Satellites (I)
  • LEO Satellites (II)
  • LEO Satellites (III)
  • LEO Satellites Main Issues
  • Digital Communication Techniques
  • Motivations
  • Contributions
  • LoRa Tx/Rx Principle (Transmitter)
  • LoRa Tx/Rx Principle (Receiver)
  • System Model (Transmitted Signal) (I)
  • System Model (Transmitted Signal) (II)
  • LoRa
  • Frequency Error Tolerance
  • LoRa Packet Structure
  • CSS when Desynchronizations Occur (I)
  • CSS when Desynchronizations Occur (II)
  • CSS when Desynchronizations Occur (III)
  • An Introduction (I)
  • An Introduction (II)
  • Performance (I)
  • Performance (II)
  • Performance (III)
  • CFO Robustness (I)
  • CFO Robustness (II)
  • DCSS - DR Robustness (I)
  • DCSS - DR Robustness (II)
  • DCSS - DR Robustness (III)
  • DCSS - DR Robustness (IV)
  • FoV: SIC / FDMA (I)
  • FoV: SIC / FDMA (I)
  • Proposed Algorithm
  • Strongest Signal Synchronization Algorit
  • Simulation of Synthesized Signals
  • Experimental Validation (I)
  • Experimental Validation (II)
  • Experimental Validation (III)
  • Experimental Validation (IV)
  • In Downlink (I)
  • In Downlink (II)
  • Conclusion
  • 2. CSS
  • 3. CSS WHEN DESYNCHRONIZATIONS OCCUR
  • 4. DCSS
  • 5. DR ROBUSTNESS
  • 6. FoV: SIC / FDMA
  • 6. CONCLUSION
  • Internet of Things Device Power
  • François Rivet
  • Université de Bordeaux, France
  • Billions of Things ...
  • But hardware is the key ...
  • It is more than data
  • IoT in the countryside
  • Data
  • Idea
  • IoT Device Operating
  • Edge vs Cloud Computing
  • Environmental Signals
  • Regression Model (I)
  • Regression Model (II)
  • Regression
  • Regression Model (III)
  • Regression Model (IV)
  • Regression Model (V)
  • Regression Model (VI)
  • % Error over a day
  • The Order Depends on ...
  • Experiment
  • Digital implementation
  • The Data Frame
  • Coding of Coefficients
  • 3-week Experiment
  • 3-week Experiment Results
  • 3-week Experiment Feedback
  • Consumption Measurements
  • Conclusion
  • CHAPTER 05
  • Low Power Soc Design Flow and Methodolog
  • Ronald Valenzuela
  • Synopsys, Santiago, Chile
  • Outline
  • Applications
  • Integration (I)
  • The Beginning
  • Integration (II)
  • Gordon E. Moore's Law (I)
  • Gordon E. Moore's Law (II)
  • About Circuits
  • At the Foundry: Circuits are Printed in
  • At the Foundry: Circuits are Printed in
  • The Concept
  • Basic Steps of Digital Design Flow (I)
  • Basic Steps of Digital Design Flow (II)
  • Digital IC Specification
  • Logic Simulations
  • Logic Synthesis (I)
  • Logic Synthesis (II)
  • Logic Synthesis (III)
  • Logic Synthesis optimizations
  • Formal Verification
  • Digital Design Flow
  • Physical Synthesis Steps
  • Design Planning: Floorplan
  • Design Planning: Power Network Synthesis
  • Placement
  • Clock Distribution
  • Clock Tree Synthesis
  • Routing
  • Some Remarks Regarding Integration (I)
  • Some Remarks Regarding Integration (II)
  • Mainstream Optimizations
  • Clock-Gating Insertion
  • Self-Gating
  • Architectural Optimization (I)
  • Architectural Optimization (II)
  • Integrated Multibit Banking and Debankin
  • Power Sizing &amp
  • Multi-threshold Optimizat
  • Low Power Placement
  • Glitch Reduction
  • Dependency on Simulation Vectors
  • Advanced Low Power Design Techniques
  • Power Gating (Shutdown)
  • Multi-Voltage
  • Multi-Voltage with Shutdown
  • Dynamic Voltage (and Frequency) Scaling
  • Verification Challenge: Power Management
  • Summary of Low Power Impact on Design Fl
  • RTL Designers Need Power Intent
  • UPF - A Brief History
  • Defining Power Domains
  • Defining Your Power Intent
  • Functional Intent vs. Power Intent
  • INTRODUCTION
  • DESIGN FLOW
  • CLOC DESIGN FLOW: PHYSICAL SYNTHESIS
  • AUTOMATIC LOW POWER TECHNIQUES
  • MULTI VOLTAGE WITH IEEE1801
  • CHAPTER 06
  • g/I Technique for Analog Circuit Design
  • Angel Abusleme
  • Pablo Walker
  • Pontificia Universidad Católica de Chile
  • Agribusiness Sensors and IoT
  • Analog Front-ends
  • Talk Outline
  • ELECTRONIC AMPLIFIER DESIGN
  • Analog IC Design Flow
  • The Amplifier
  • The Amplifier on a Feedback Configuratio