Shallow Geothermal Energy Theory and Application
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2022
|
Schriftenreihe: | Springer Hydrogeology Ser
|
Schlagworte: | |
Online-Zugang: | DE-2070s |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048830803 | ||
003 | DE-604 | ||
005 | 20240116 | ||
007 | cr|uuu---uuuuu | ||
008 | 230224s2022 xx o|||| 00||| eng d | ||
020 | |a 9783030922580 |9 978-3-030-92258-0 | ||
035 | |a (ZDB-30-PQE)EBC6877655 | ||
035 | |a (ZDB-30-PAD)EBC6877655 | ||
035 | |a (ZDB-89-EBL)EBL6877655 | ||
035 | |a (OCoLC)1294828451 | ||
035 | |a (DE-599)BVBBV048830803 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 333.880946 | |
084 | |a RB 10701 |0 (DE-625)142220:14161 |2 rvk | ||
100 | 1 | |a García Gil, Alejandro |e Verfasser |4 aut | |
245 | 1 | 0 | |a Shallow Geothermal Energy |b Theory and Application |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (362 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Hydrogeology Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Contents -- About the Authors -- Abbreviations -- Symbols -- Superscripts -- Superscripts -- 1 Introduction -- 1.1 Background -- 1.2 Shallow Geothermal Energy -- 1.2.1 Geothermal Energy -- 1.2.2 Types and Classification of Geothermal Energy -- 1.2.3 Shallow Geothermal Energy -- 1.2.4 Brief History of Shallow Geothermal Energy -- References -- 2 Theoretical Background -- 2.1 Thermodynamic Principles -- 2.1.1 Concept of Energy -- 2.1.2 Temperature and Heat -- 2.1.3 Heat Transfer Mechanisms -- 2.1.4 First Law of Thermodynamics -- 2.1.5 Carnot Cycle -- 2.1.6 Second Law of Thermodynamics -- 2.1.7 Isoentropic Process -- 2.2 Heat Transfer -- 2.2.1 Porous Media and Its Approximation to a Continuous Media -- 2.2.2 Heat Conduction Mechanism -- 2.2.3 Heat Convection Mechanism -- 2.2.4 Hydrodynamic Heat Dispersion -- 2.2.5 Conduction-Convection-Heat Dispersion in a Porous Media -- 2.3 Parameters of Interest in Shallow Geothermal Energy -- 2.3.1 Thermal Conductivity (W m−1 K−1) -- 2.3.2 Thermal Resistivity R (K W−1) -- 2.3.3 Thermal Expansion (K−1) -- 2.3.4 Density (kg m−3) -- 2.3.5 Specific Heat Capacity c (J kg−1 K−1) -- 2.3.6 Thermal Diffusivity α (m2 s−1) -- 2.3.7 Viscosity µ (Pa s) -- 2.3.8 Reynolds Number Re (−) -- 2.3.9 Fourier Number Fo (−) -- 2.3.10 Peclet Number Pe (−) -- 2.3.11 Porosity φ (−) -- 2.4 Fluid Mechanics in Porous Media -- 2.4.1 Darcy's Law -- 2.4.2 General Groundwater Flow Equation -- References -- 3 Underground Thermal Regime -- 3.1 Energy Balance of the Earth-Atmosphere System -- 3.2 Deep Geothermal Upward Heat Flow -- 3.2.1 Underground Temperature Profile -- 3.3 Regional Groundwater Flow and Heat Advection -- 3.4 Heat Exchange with Surface Water Bodies -- 3.5 Heat Exchange with Urban Structures -- References -- 4 Geothermal Heat Pump -- 4.1 Thermal Installations -- 4.1.1 External Heat Exchange Systems | |
505 | 8 | |a 4.1.2 Heat Production Systems -- 4.1.3 Heat Distribution Systems -- 4.1.4 Internal Heat Exchange Systems -- 4.2 Heat Pumps -- 4.3 Heat Transfer Through the Vapour Compression Cycle -- 4.3.1 Ideal Vapour Compression Cycle -- 4.3.2 Real Vapour Compression Cycle -- 4.4 Reversibility -- 4.5 Operating Mode of Heat Pumps -- 4.6 Performance -- 4.7 CO2 Emissions -- 4.8 Types of Heat Pumps -- 4.9 Geothermal Heat Pumps -- References -- 5 Shallow Geothermal Systems with Closed-Loop Geothermal Heat Exchangers -- 5.1 General Characteristics -- 5.2 Closed-Loop Geothermal Heat Exchangers -- 5.2.1 Types of Geothermal Heat Exchangers -- 5.2.2 Grids of Closed-Loop Geothermal Heat Exchangers (BHEs) -- 5.2.3 Drilling Systems in the Construction of Geothermal Heat Exchangers -- 5.3 Heat Transfer in Closed Geothermal Heat Exchangers -- 5.3.1 Heat Transfer Equation for Multicomponent Systems -- 5.3.2 General Heat Transfer Equation for Closed Geothermal Heat Exchangers -- 5.3.3 Heat Transfer Equations for the Main Closed Geothermal Heat Exchanger Designs -- 5.3.4 Analytical Models of Heat Transfer in Closed Geothermal Heat Exchangers -- 5.4 Heat Transfer with the Ground -- 5.4.1 Infinite Linear Source Model (ILS) -- 5.4.2 Infinite Cylindrical Source (ICS) Model -- 5.4.3 Finite Linear Source Model (FLS) -- 5.4.4 Moving Infinite Linear Source Model (MILS) -- 5.4.5 Numerical Models -- 5.5 Horizontal Closed-Loop Geothermal Heat Exchangers -- 5.5.1 Types of Horizontal Geothermal Heat Exchangers -- 5.6 Borehole Thermal Energy Storage (BTES) -- 5.7 Thermoactive Geostructures -- 5.7.1 Thermoactive Piles -- 5.7.2 Thermoactive Walls -- 5.7.3 Thermoactive Tunnels -- References -- 6 Shallow Geothermal Systems with Open-Loop Geothermal Heat Exchangers -- 6.1 Shallow Geothermal Installations with Open-Loop Geothermal Heat Exchangers | |
505 | 8 | |a 6.2 Components of an Open-Loop Geothermal Heat Exchanger -- 6.3 Design, Construction and Operation -- 6.4 Heat Transfer with the Ground -- 6.5 Chemical Quality of Groundwater -- 6.5.1 Reducing the Lifetime of Open-Loop Geothermal Heat Exchangers -- 6.6 Numerical Modelling of Groundwater Flow and Heat Transport -- 6.7 Aquifer Thermal Energy Storage (ATES) -- 6.7.1 Thermal Performance in ATES Systems -- 6.8 Thermal Use of Mine Water -- References -- 7 Obtaining Terrain Thermal Parameters -- 7.1 Estimation of Laboratory Thermal Parameters -- 7.1.1 Tests for the Estimation of Thermal Conductivity in the Laboratory -- 7.2 Thermal Response Test (TRT) -- 7.2.1 Performance of TRTs -- 7.2.2 Interpretation of Results Obtained from TRT Testing -- 7.3 Thermal Tracer Test (TTT) -- 7.4 Field Estimation of Hydraulic Parameters -- References -- 8 Environmental Impacts -- 8.1 Thermal Impacts -- 8.2 Geochemical Impacts -- 8.3 Ecological Impacts -- 8.4 Geotechnical Impacts -- References -- 9 Management and Governance of Shallow Geothermal Energy Resources -- 9.1 Management of Shallow Geothermal Energy Resources -- 9.1.1 Shallow Geothermal Energy Potential -- 9.1.2 Existing Management Approaches -- 9.1.3 Management Concepts -- 9.2 Governance Policies -- 9.3 Overall Structure of the Management Framework -- 9.3.1 Sustainable Development and Exploitation of Shallow Geothermal Energy Resources -- 9.3.2 Environmentally Friendly Use of Shallow Geothermal Energy Resources -- 9.3.3 Exploitation of Shallow Geothermal Resources in Coordination with Other Subsoil Uses -- 9.3.4 Effective Management of Shallow Geothermal Resources -- 9.4 Governance Model -- References -- 10 Legal Framework for Regulation -- 10.1 Policies, Strategies and Regulatory Standards in the European Union for the Promotion of Shallow Geothermal Energy | |
505 | 8 | |a 10.1.1 Policies and Strategies for the Promotion of Renewable Energies -- 10.1.2 Regulatory Standards for the Increase of Renewable Energies -- 10.2 European Regulatory Legal Framework for the Use of Shallow Geothermal Energy -- 10.2.1 Legal Framework at the National Level of Member States -- 10.2.2 European Regulatory Legal Framework for the Protection of the Groundwater Public Domain -- 10.3 Legal Framework for Regulation in Spain -- 10.3.1 Legal Definition of Shallow Geothermal Energy in Spain -- 10.3.2 Technical Guidelines for the Implementation of Good Practices -- 10.3.3 Regulations for the Use of Shallow Geothermal Installations -- 10.4 Special Requirements for the Installation and Operation of Shallow Geothermal Installations -- 10.5 Future Need for Adaptation of the Spanish Regulatory Framework -- References -- 11 Example of Application (I): The Management of Shallow Geothermal Energy Resources in the City of Zaragoza -- 11.1 The Early Exploitation of Shallow Geothermal Energy Resources -- 11.2 Geological and Hydrogeological Framework -- 11.3 Characterisation of Geothermal Exploitation -- 11.4 The Zaragoza Geothermal Monitoring Network -- 11.5 Impact of Thermal Discharges from Shallow Geothermal Installations on the Aquifer -- 11.5.1 Thermal Impact -- 11.5.2 Chemical Impact -- 11.5.3 Microbiological Impact -- 11.6 The 3D Numerical Model of Groundwater Flow and Heat Transport -- 11.7 Criteria and Policy for Adopted by Resource Managers -- 11.8 Current Situation. The Procedure for Authorisation of Thermal Discharges and Thermal Impact Assessment Studies -- 11.8.1 Authorisation Procedure for a Thermal Discharge -- References -- 12 Example of Application (II): The Exploitation of Shallow Geothermal Energy Resources in the Canary Islands -- 12.1 Renewable Energy in the Canary Islands -- 12.2 Shallow Geothermal Installations in the Canary Islands | |
505 | 8 | |a 12.2.1 Geological and Hydrogeological Framework -- 12.2.2 Impact of the Energy Transition Through Shallow Geothermal Energy -- 12.2.3 Environmental and Economic Benefits -- References | |
650 | 4 | |a Geothermal resources | |
650 | 4 | |a Geothermal resources-Mathematical models | |
650 | 0 | 7 | |a Geothermik |0 (DE-588)4020285-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geothermik |0 (DE-588)4020285-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Garrido Schneider, Eduardo Antonio |e Sonstige |4 oth | |
700 | 1 | |a Mejías Moreno, Miguel |e Sonstige |4 oth | |
700 | 1 | |a Santamarta Cerezal, Juan Carlos |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a García Gil, Alejandro |t Shallow Geothermal Energy |d Cham : Springer International Publishing AG,c2022 |z 9783030922573 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034096381 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6877655 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1819314300635840513 |
---|---|
any_adam_object | |
author | García Gil, Alejandro |
author_facet | García Gil, Alejandro |
author_role | aut |
author_sort | García Gil, Alejandro |
author_variant | g a g ga gag |
building | Verbundindex |
bvnumber | BV048830803 |
classification_rvk | RB 10701 |
collection | ZDB-30-PQE |
contents | Intro -- Contents -- About the Authors -- Abbreviations -- Symbols -- Superscripts -- Superscripts -- 1 Introduction -- 1.1 Background -- 1.2 Shallow Geothermal Energy -- 1.2.1 Geothermal Energy -- 1.2.2 Types and Classification of Geothermal Energy -- 1.2.3 Shallow Geothermal Energy -- 1.2.4 Brief History of Shallow Geothermal Energy -- References -- 2 Theoretical Background -- 2.1 Thermodynamic Principles -- 2.1.1 Concept of Energy -- 2.1.2 Temperature and Heat -- 2.1.3 Heat Transfer Mechanisms -- 2.1.4 First Law of Thermodynamics -- 2.1.5 Carnot Cycle -- 2.1.6 Second Law of Thermodynamics -- 2.1.7 Isoentropic Process -- 2.2 Heat Transfer -- 2.2.1 Porous Media and Its Approximation to a Continuous Media -- 2.2.2 Heat Conduction Mechanism -- 2.2.3 Heat Convection Mechanism -- 2.2.4 Hydrodynamic Heat Dispersion -- 2.2.5 Conduction-Convection-Heat Dispersion in a Porous Media -- 2.3 Parameters of Interest in Shallow Geothermal Energy -- 2.3.1 Thermal Conductivity (W m−1 K−1) -- 2.3.2 Thermal Resistivity R (K W−1) -- 2.3.3 Thermal Expansion (K−1) -- 2.3.4 Density (kg m−3) -- 2.3.5 Specific Heat Capacity c (J kg−1 K−1) -- 2.3.6 Thermal Diffusivity α (m2 s−1) -- 2.3.7 Viscosity µ (Pa s) -- 2.3.8 Reynolds Number Re (−) -- 2.3.9 Fourier Number Fo (−) -- 2.3.10 Peclet Number Pe (−) -- 2.3.11 Porosity φ (−) -- 2.4 Fluid Mechanics in Porous Media -- 2.4.1 Darcy's Law -- 2.4.2 General Groundwater Flow Equation -- References -- 3 Underground Thermal Regime -- 3.1 Energy Balance of the Earth-Atmosphere System -- 3.2 Deep Geothermal Upward Heat Flow -- 3.2.1 Underground Temperature Profile -- 3.3 Regional Groundwater Flow and Heat Advection -- 3.4 Heat Exchange with Surface Water Bodies -- 3.5 Heat Exchange with Urban Structures -- References -- 4 Geothermal Heat Pump -- 4.1 Thermal Installations -- 4.1.1 External Heat Exchange Systems 4.1.2 Heat Production Systems -- 4.1.3 Heat Distribution Systems -- 4.1.4 Internal Heat Exchange Systems -- 4.2 Heat Pumps -- 4.3 Heat Transfer Through the Vapour Compression Cycle -- 4.3.1 Ideal Vapour Compression Cycle -- 4.3.2 Real Vapour Compression Cycle -- 4.4 Reversibility -- 4.5 Operating Mode of Heat Pumps -- 4.6 Performance -- 4.7 CO2 Emissions -- 4.8 Types of Heat Pumps -- 4.9 Geothermal Heat Pumps -- References -- 5 Shallow Geothermal Systems with Closed-Loop Geothermal Heat Exchangers -- 5.1 General Characteristics -- 5.2 Closed-Loop Geothermal Heat Exchangers -- 5.2.1 Types of Geothermal Heat Exchangers -- 5.2.2 Grids of Closed-Loop Geothermal Heat Exchangers (BHEs) -- 5.2.3 Drilling Systems in the Construction of Geothermal Heat Exchangers -- 5.3 Heat Transfer in Closed Geothermal Heat Exchangers -- 5.3.1 Heat Transfer Equation for Multicomponent Systems -- 5.3.2 General Heat Transfer Equation for Closed Geothermal Heat Exchangers -- 5.3.3 Heat Transfer Equations for the Main Closed Geothermal Heat Exchanger Designs -- 5.3.4 Analytical Models of Heat Transfer in Closed Geothermal Heat Exchangers -- 5.4 Heat Transfer with the Ground -- 5.4.1 Infinite Linear Source Model (ILS) -- 5.4.2 Infinite Cylindrical Source (ICS) Model -- 5.4.3 Finite Linear Source Model (FLS) -- 5.4.4 Moving Infinite Linear Source Model (MILS) -- 5.4.5 Numerical Models -- 5.5 Horizontal Closed-Loop Geothermal Heat Exchangers -- 5.5.1 Types of Horizontal Geothermal Heat Exchangers -- 5.6 Borehole Thermal Energy Storage (BTES) -- 5.7 Thermoactive Geostructures -- 5.7.1 Thermoactive Piles -- 5.7.2 Thermoactive Walls -- 5.7.3 Thermoactive Tunnels -- References -- 6 Shallow Geothermal Systems with Open-Loop Geothermal Heat Exchangers -- 6.1 Shallow Geothermal Installations with Open-Loop Geothermal Heat Exchangers 6.2 Components of an Open-Loop Geothermal Heat Exchanger -- 6.3 Design, Construction and Operation -- 6.4 Heat Transfer with the Ground -- 6.5 Chemical Quality of Groundwater -- 6.5.1 Reducing the Lifetime of Open-Loop Geothermal Heat Exchangers -- 6.6 Numerical Modelling of Groundwater Flow and Heat Transport -- 6.7 Aquifer Thermal Energy Storage (ATES) -- 6.7.1 Thermal Performance in ATES Systems -- 6.8 Thermal Use of Mine Water -- References -- 7 Obtaining Terrain Thermal Parameters -- 7.1 Estimation of Laboratory Thermal Parameters -- 7.1.1 Tests for the Estimation of Thermal Conductivity in the Laboratory -- 7.2 Thermal Response Test (TRT) -- 7.2.1 Performance of TRTs -- 7.2.2 Interpretation of Results Obtained from TRT Testing -- 7.3 Thermal Tracer Test (TTT) -- 7.4 Field Estimation of Hydraulic Parameters -- References -- 8 Environmental Impacts -- 8.1 Thermal Impacts -- 8.2 Geochemical Impacts -- 8.3 Ecological Impacts -- 8.4 Geotechnical Impacts -- References -- 9 Management and Governance of Shallow Geothermal Energy Resources -- 9.1 Management of Shallow Geothermal Energy Resources -- 9.1.1 Shallow Geothermal Energy Potential -- 9.1.2 Existing Management Approaches -- 9.1.3 Management Concepts -- 9.2 Governance Policies -- 9.3 Overall Structure of the Management Framework -- 9.3.1 Sustainable Development and Exploitation of Shallow Geothermal Energy Resources -- 9.3.2 Environmentally Friendly Use of Shallow Geothermal Energy Resources -- 9.3.3 Exploitation of Shallow Geothermal Resources in Coordination with Other Subsoil Uses -- 9.3.4 Effective Management of Shallow Geothermal Resources -- 9.4 Governance Model -- References -- 10 Legal Framework for Regulation -- 10.1 Policies, Strategies and Regulatory Standards in the European Union for the Promotion of Shallow Geothermal Energy 10.1.1 Policies and Strategies for the Promotion of Renewable Energies -- 10.1.2 Regulatory Standards for the Increase of Renewable Energies -- 10.2 European Regulatory Legal Framework for the Use of Shallow Geothermal Energy -- 10.2.1 Legal Framework at the National Level of Member States -- 10.2.2 European Regulatory Legal Framework for the Protection of the Groundwater Public Domain -- 10.3 Legal Framework for Regulation in Spain -- 10.3.1 Legal Definition of Shallow Geothermal Energy in Spain -- 10.3.2 Technical Guidelines for the Implementation of Good Practices -- 10.3.3 Regulations for the Use of Shallow Geothermal Installations -- 10.4 Special Requirements for the Installation and Operation of Shallow Geothermal Installations -- 10.5 Future Need for Adaptation of the Spanish Regulatory Framework -- References -- 11 Example of Application (I): The Management of Shallow Geothermal Energy Resources in the City of Zaragoza -- 11.1 The Early Exploitation of Shallow Geothermal Energy Resources -- 11.2 Geological and Hydrogeological Framework -- 11.3 Characterisation of Geothermal Exploitation -- 11.4 The Zaragoza Geothermal Monitoring Network -- 11.5 Impact of Thermal Discharges from Shallow Geothermal Installations on the Aquifer -- 11.5.1 Thermal Impact -- 11.5.2 Chemical Impact -- 11.5.3 Microbiological Impact -- 11.6 The 3D Numerical Model of Groundwater Flow and Heat Transport -- 11.7 Criteria and Policy for Adopted by Resource Managers -- 11.8 Current Situation. The Procedure for Authorisation of Thermal Discharges and Thermal Impact Assessment Studies -- 11.8.1 Authorisation Procedure for a Thermal Discharge -- References -- 12 Example of Application (II): The Exploitation of Shallow Geothermal Energy Resources in the Canary Islands -- 12.1 Renewable Energy in the Canary Islands -- 12.2 Shallow Geothermal Installations in the Canary Islands 12.2.1 Geological and Hydrogeological Framework -- 12.2.2 Impact of the Energy Transition Through Shallow Geothermal Energy -- 12.2.3 Environmental and Economic Benefits -- References |
ctrlnum | (ZDB-30-PQE)EBC6877655 (ZDB-30-PAD)EBC6877655 (ZDB-89-EBL)EBL6877655 (OCoLC)1294828451 (DE-599)BVBBV048830803 |
dewey-full | 333.880946 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 333 - Economics of land and energy |
dewey-raw | 333.880946 |
dewey-search | 333.880946 |
dewey-sort | 3333.880946 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften Geographie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09690nam a2200541zc 4500</leader><controlfield tag="001">BV048830803</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240116 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230224s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030922580</subfield><subfield code="9">978-3-030-92258-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6877655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6877655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6877655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1294828451</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048830803</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.880946</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10701</subfield><subfield code="0">(DE-625)142220:14161</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">García Gil, Alejandro</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shallow Geothermal Energy</subfield><subfield code="b">Theory and Application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (362 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Hydrogeology Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Contents -- About the Authors -- Abbreviations -- Symbols -- Superscripts -- Superscripts -- 1 Introduction -- 1.1 Background -- 1.2 Shallow Geothermal Energy -- 1.2.1 Geothermal Energy -- 1.2.2 Types and Classification of Geothermal Energy -- 1.2.3 Shallow Geothermal Energy -- 1.2.4 Brief History of Shallow Geothermal Energy -- References -- 2 Theoretical Background -- 2.1 Thermodynamic Principles -- 2.1.1 Concept of Energy -- 2.1.2 Temperature and Heat -- 2.1.3 Heat Transfer Mechanisms -- 2.1.4 First Law of Thermodynamics -- 2.1.5 Carnot Cycle -- 2.1.6 Second Law of Thermodynamics -- 2.1.7 Isoentropic Process -- 2.2 Heat Transfer -- 2.2.1 Porous Media and Its Approximation to a Continuous Media -- 2.2.2 Heat Conduction Mechanism -- 2.2.3 Heat Convection Mechanism -- 2.2.4 Hydrodynamic Heat Dispersion -- 2.2.5 Conduction-Convection-Heat Dispersion in a Porous Media -- 2.3 Parameters of Interest in Shallow Geothermal Energy -- 2.3.1 Thermal Conductivity (W m−1 K−1) -- 2.3.2 Thermal Resistivity R (K W−1) -- 2.3.3 Thermal Expansion (K−1) -- 2.3.4 Density (kg m−3) -- 2.3.5 Specific Heat Capacity c (J kg−1 K−1) -- 2.3.6 Thermal Diffusivity α (m2 s−1) -- 2.3.7 Viscosity µ (Pa s) -- 2.3.8 Reynolds Number Re (−) -- 2.3.9 Fourier Number Fo (−) -- 2.3.10 Peclet Number Pe (−) -- 2.3.11 Porosity φ (−) -- 2.4 Fluid Mechanics in Porous Media -- 2.4.1 Darcy's Law -- 2.4.2 General Groundwater Flow Equation -- References -- 3 Underground Thermal Regime -- 3.1 Energy Balance of the Earth-Atmosphere System -- 3.2 Deep Geothermal Upward Heat Flow -- 3.2.1 Underground Temperature Profile -- 3.3 Regional Groundwater Flow and Heat Advection -- 3.4 Heat Exchange with Surface Water Bodies -- 3.5 Heat Exchange with Urban Structures -- References -- 4 Geothermal Heat Pump -- 4.1 Thermal Installations -- 4.1.1 External Heat Exchange Systems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1.2 Heat Production Systems -- 4.1.3 Heat Distribution Systems -- 4.1.4 Internal Heat Exchange Systems -- 4.2 Heat Pumps -- 4.3 Heat Transfer Through the Vapour Compression Cycle -- 4.3.1 Ideal Vapour Compression Cycle -- 4.3.2 Real Vapour Compression Cycle -- 4.4 Reversibility -- 4.5 Operating Mode of Heat Pumps -- 4.6 Performance -- 4.7 CO2 Emissions -- 4.8 Types of Heat Pumps -- 4.9 Geothermal Heat Pumps -- References -- 5 Shallow Geothermal Systems with Closed-Loop Geothermal Heat Exchangers -- 5.1 General Characteristics -- 5.2 Closed-Loop Geothermal Heat Exchangers -- 5.2.1 Types of Geothermal Heat Exchangers -- 5.2.2 Grids of Closed-Loop Geothermal Heat Exchangers (BHEs) -- 5.2.3 Drilling Systems in the Construction of Geothermal Heat Exchangers -- 5.3 Heat Transfer in Closed Geothermal Heat Exchangers -- 5.3.1 Heat Transfer Equation for Multicomponent Systems -- 5.3.2 General Heat Transfer Equation for Closed Geothermal Heat Exchangers -- 5.3.3 Heat Transfer Equations for the Main Closed Geothermal Heat Exchanger Designs -- 5.3.4 Analytical Models of Heat Transfer in Closed Geothermal Heat Exchangers -- 5.4 Heat Transfer with the Ground -- 5.4.1 Infinite Linear Source Model (ILS) -- 5.4.2 Infinite Cylindrical Source (ICS) Model -- 5.4.3 Finite Linear Source Model (FLS) -- 5.4.4 Moving Infinite Linear Source Model (MILS) -- 5.4.5 Numerical Models -- 5.5 Horizontal Closed-Loop Geothermal Heat Exchangers -- 5.5.1 Types of Horizontal Geothermal Heat Exchangers -- 5.6 Borehole Thermal Energy Storage (BTES) -- 5.7 Thermoactive Geostructures -- 5.7.1 Thermoactive Piles -- 5.7.2 Thermoactive Walls -- 5.7.3 Thermoactive Tunnels -- References -- 6 Shallow Geothermal Systems with Open-Loop Geothermal Heat Exchangers -- 6.1 Shallow Geothermal Installations with Open-Loop Geothermal Heat Exchangers</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2 Components of an Open-Loop Geothermal Heat Exchanger -- 6.3 Design, Construction and Operation -- 6.4 Heat Transfer with the Ground -- 6.5 Chemical Quality of Groundwater -- 6.5.1 Reducing the Lifetime of Open-Loop Geothermal Heat Exchangers -- 6.6 Numerical Modelling of Groundwater Flow and Heat Transport -- 6.7 Aquifer Thermal Energy Storage (ATES) -- 6.7.1 Thermal Performance in ATES Systems -- 6.8 Thermal Use of Mine Water -- References -- 7 Obtaining Terrain Thermal Parameters -- 7.1 Estimation of Laboratory Thermal Parameters -- 7.1.1 Tests for the Estimation of Thermal Conductivity in the Laboratory -- 7.2 Thermal Response Test (TRT) -- 7.2.1 Performance of TRTs -- 7.2.2 Interpretation of Results Obtained from TRT Testing -- 7.3 Thermal Tracer Test (TTT) -- 7.4 Field Estimation of Hydraulic Parameters -- References -- 8 Environmental Impacts -- 8.1 Thermal Impacts -- 8.2 Geochemical Impacts -- 8.3 Ecological Impacts -- 8.4 Geotechnical Impacts -- References -- 9 Management and Governance of Shallow Geothermal Energy Resources -- 9.1 Management of Shallow Geothermal Energy Resources -- 9.1.1 Shallow Geothermal Energy Potential -- 9.1.2 Existing Management Approaches -- 9.1.3 Management Concepts -- 9.2 Governance Policies -- 9.3 Overall Structure of the Management Framework -- 9.3.1 Sustainable Development and Exploitation of Shallow Geothermal Energy Resources -- 9.3.2 Environmentally Friendly Use of Shallow Geothermal Energy Resources -- 9.3.3 Exploitation of Shallow Geothermal Resources in Coordination with Other Subsoil Uses -- 9.3.4 Effective Management of Shallow Geothermal Resources -- 9.4 Governance Model -- References -- 10 Legal Framework for Regulation -- 10.1 Policies, Strategies and Regulatory Standards in the European Union for the Promotion of Shallow Geothermal Energy</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.1.1 Policies and Strategies for the Promotion of Renewable Energies -- 10.1.2 Regulatory Standards for the Increase of Renewable Energies -- 10.2 European Regulatory Legal Framework for the Use of Shallow Geothermal Energy -- 10.2.1 Legal Framework at the National Level of Member States -- 10.2.2 European Regulatory Legal Framework for the Protection of the Groundwater Public Domain -- 10.3 Legal Framework for Regulation in Spain -- 10.3.1 Legal Definition of Shallow Geothermal Energy in Spain -- 10.3.2 Technical Guidelines for the Implementation of Good Practices -- 10.3.3 Regulations for the Use of Shallow Geothermal Installations -- 10.4 Special Requirements for the Installation and Operation of Shallow Geothermal Installations -- 10.5 Future Need for Adaptation of the Spanish Regulatory Framework -- References -- 11 Example of Application (I): The Management of Shallow Geothermal Energy Resources in the City of Zaragoza -- 11.1 The Early Exploitation of Shallow Geothermal Energy Resources -- 11.2 Geological and Hydrogeological Framework -- 11.3 Characterisation of Geothermal Exploitation -- 11.4 The Zaragoza Geothermal Monitoring Network -- 11.5 Impact of Thermal Discharges from Shallow Geothermal Installations on the Aquifer -- 11.5.1 Thermal Impact -- 11.5.2 Chemical Impact -- 11.5.3 Microbiological Impact -- 11.6 The 3D Numerical Model of Groundwater Flow and Heat Transport -- 11.7 Criteria and Policy for Adopted by Resource Managers -- 11.8 Current Situation. The Procedure for Authorisation of Thermal Discharges and Thermal Impact Assessment Studies -- 11.8.1 Authorisation Procedure for a Thermal Discharge -- References -- 12 Example of Application (II): The Exploitation of Shallow Geothermal Energy Resources in the Canary Islands -- 12.1 Renewable Energy in the Canary Islands -- 12.2 Shallow Geothermal Installations in the Canary Islands</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.2.1 Geological and Hydrogeological Framework -- 12.2.2 Impact of the Energy Transition Through Shallow Geothermal Energy -- 12.2.3 Environmental and Economic Benefits -- References</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geothermal resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geothermal resources-Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geothermik</subfield><subfield code="0">(DE-588)4020285-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geothermik</subfield><subfield code="0">(DE-588)4020285-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garrido Schneider, Eduardo Antonio</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mejías Moreno, Miguel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santamarta Cerezal, Juan Carlos</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">García Gil, Alejandro</subfield><subfield code="t">Shallow Geothermal Energy</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">9783030922573</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034096381</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6877655</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048830803 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T09:42:01Z |
institution | BVB |
isbn | 9783030922580 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034096381 |
oclc_num | 1294828451 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (362 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Springer Hydrogeology Ser |
spelling | García Gil, Alejandro Verfasser aut Shallow Geothermal Energy Theory and Application Cham Springer International Publishing AG 2022 ©2022 1 Online-Ressource (362 Seiten) txt rdacontent c rdamedia cr rdacarrier Springer Hydrogeology Ser Description based on publisher supplied metadata and other sources Intro -- Contents -- About the Authors -- Abbreviations -- Symbols -- Superscripts -- Superscripts -- 1 Introduction -- 1.1 Background -- 1.2 Shallow Geothermal Energy -- 1.2.1 Geothermal Energy -- 1.2.2 Types and Classification of Geothermal Energy -- 1.2.3 Shallow Geothermal Energy -- 1.2.4 Brief History of Shallow Geothermal Energy -- References -- 2 Theoretical Background -- 2.1 Thermodynamic Principles -- 2.1.1 Concept of Energy -- 2.1.2 Temperature and Heat -- 2.1.3 Heat Transfer Mechanisms -- 2.1.4 First Law of Thermodynamics -- 2.1.5 Carnot Cycle -- 2.1.6 Second Law of Thermodynamics -- 2.1.7 Isoentropic Process -- 2.2 Heat Transfer -- 2.2.1 Porous Media and Its Approximation to a Continuous Media -- 2.2.2 Heat Conduction Mechanism -- 2.2.3 Heat Convection Mechanism -- 2.2.4 Hydrodynamic Heat Dispersion -- 2.2.5 Conduction-Convection-Heat Dispersion in a Porous Media -- 2.3 Parameters of Interest in Shallow Geothermal Energy -- 2.3.1 Thermal Conductivity (W m−1 K−1) -- 2.3.2 Thermal Resistivity R (K W−1) -- 2.3.3 Thermal Expansion (K−1) -- 2.3.4 Density (kg m−3) -- 2.3.5 Specific Heat Capacity c (J kg−1 K−1) -- 2.3.6 Thermal Diffusivity α (m2 s−1) -- 2.3.7 Viscosity µ (Pa s) -- 2.3.8 Reynolds Number Re (−) -- 2.3.9 Fourier Number Fo (−) -- 2.3.10 Peclet Number Pe (−) -- 2.3.11 Porosity φ (−) -- 2.4 Fluid Mechanics in Porous Media -- 2.4.1 Darcy's Law -- 2.4.2 General Groundwater Flow Equation -- References -- 3 Underground Thermal Regime -- 3.1 Energy Balance of the Earth-Atmosphere System -- 3.2 Deep Geothermal Upward Heat Flow -- 3.2.1 Underground Temperature Profile -- 3.3 Regional Groundwater Flow and Heat Advection -- 3.4 Heat Exchange with Surface Water Bodies -- 3.5 Heat Exchange with Urban Structures -- References -- 4 Geothermal Heat Pump -- 4.1 Thermal Installations -- 4.1.1 External Heat Exchange Systems 4.1.2 Heat Production Systems -- 4.1.3 Heat Distribution Systems -- 4.1.4 Internal Heat Exchange Systems -- 4.2 Heat Pumps -- 4.3 Heat Transfer Through the Vapour Compression Cycle -- 4.3.1 Ideal Vapour Compression Cycle -- 4.3.2 Real Vapour Compression Cycle -- 4.4 Reversibility -- 4.5 Operating Mode of Heat Pumps -- 4.6 Performance -- 4.7 CO2 Emissions -- 4.8 Types of Heat Pumps -- 4.9 Geothermal Heat Pumps -- References -- 5 Shallow Geothermal Systems with Closed-Loop Geothermal Heat Exchangers -- 5.1 General Characteristics -- 5.2 Closed-Loop Geothermal Heat Exchangers -- 5.2.1 Types of Geothermal Heat Exchangers -- 5.2.2 Grids of Closed-Loop Geothermal Heat Exchangers (BHEs) -- 5.2.3 Drilling Systems in the Construction of Geothermal Heat Exchangers -- 5.3 Heat Transfer in Closed Geothermal Heat Exchangers -- 5.3.1 Heat Transfer Equation for Multicomponent Systems -- 5.3.2 General Heat Transfer Equation for Closed Geothermal Heat Exchangers -- 5.3.3 Heat Transfer Equations for the Main Closed Geothermal Heat Exchanger Designs -- 5.3.4 Analytical Models of Heat Transfer in Closed Geothermal Heat Exchangers -- 5.4 Heat Transfer with the Ground -- 5.4.1 Infinite Linear Source Model (ILS) -- 5.4.2 Infinite Cylindrical Source (ICS) Model -- 5.4.3 Finite Linear Source Model (FLS) -- 5.4.4 Moving Infinite Linear Source Model (MILS) -- 5.4.5 Numerical Models -- 5.5 Horizontal Closed-Loop Geothermal Heat Exchangers -- 5.5.1 Types of Horizontal Geothermal Heat Exchangers -- 5.6 Borehole Thermal Energy Storage (BTES) -- 5.7 Thermoactive Geostructures -- 5.7.1 Thermoactive Piles -- 5.7.2 Thermoactive Walls -- 5.7.3 Thermoactive Tunnels -- References -- 6 Shallow Geothermal Systems with Open-Loop Geothermal Heat Exchangers -- 6.1 Shallow Geothermal Installations with Open-Loop Geothermal Heat Exchangers 6.2 Components of an Open-Loop Geothermal Heat Exchanger -- 6.3 Design, Construction and Operation -- 6.4 Heat Transfer with the Ground -- 6.5 Chemical Quality of Groundwater -- 6.5.1 Reducing the Lifetime of Open-Loop Geothermal Heat Exchangers -- 6.6 Numerical Modelling of Groundwater Flow and Heat Transport -- 6.7 Aquifer Thermal Energy Storage (ATES) -- 6.7.1 Thermal Performance in ATES Systems -- 6.8 Thermal Use of Mine Water -- References -- 7 Obtaining Terrain Thermal Parameters -- 7.1 Estimation of Laboratory Thermal Parameters -- 7.1.1 Tests for the Estimation of Thermal Conductivity in the Laboratory -- 7.2 Thermal Response Test (TRT) -- 7.2.1 Performance of TRTs -- 7.2.2 Interpretation of Results Obtained from TRT Testing -- 7.3 Thermal Tracer Test (TTT) -- 7.4 Field Estimation of Hydraulic Parameters -- References -- 8 Environmental Impacts -- 8.1 Thermal Impacts -- 8.2 Geochemical Impacts -- 8.3 Ecological Impacts -- 8.4 Geotechnical Impacts -- References -- 9 Management and Governance of Shallow Geothermal Energy Resources -- 9.1 Management of Shallow Geothermal Energy Resources -- 9.1.1 Shallow Geothermal Energy Potential -- 9.1.2 Existing Management Approaches -- 9.1.3 Management Concepts -- 9.2 Governance Policies -- 9.3 Overall Structure of the Management Framework -- 9.3.1 Sustainable Development and Exploitation of Shallow Geothermal Energy Resources -- 9.3.2 Environmentally Friendly Use of Shallow Geothermal Energy Resources -- 9.3.3 Exploitation of Shallow Geothermal Resources in Coordination with Other Subsoil Uses -- 9.3.4 Effective Management of Shallow Geothermal Resources -- 9.4 Governance Model -- References -- 10 Legal Framework for Regulation -- 10.1 Policies, Strategies and Regulatory Standards in the European Union for the Promotion of Shallow Geothermal Energy 10.1.1 Policies and Strategies for the Promotion of Renewable Energies -- 10.1.2 Regulatory Standards for the Increase of Renewable Energies -- 10.2 European Regulatory Legal Framework for the Use of Shallow Geothermal Energy -- 10.2.1 Legal Framework at the National Level of Member States -- 10.2.2 European Regulatory Legal Framework for the Protection of the Groundwater Public Domain -- 10.3 Legal Framework for Regulation in Spain -- 10.3.1 Legal Definition of Shallow Geothermal Energy in Spain -- 10.3.2 Technical Guidelines for the Implementation of Good Practices -- 10.3.3 Regulations for the Use of Shallow Geothermal Installations -- 10.4 Special Requirements for the Installation and Operation of Shallow Geothermal Installations -- 10.5 Future Need for Adaptation of the Spanish Regulatory Framework -- References -- 11 Example of Application (I): The Management of Shallow Geothermal Energy Resources in the City of Zaragoza -- 11.1 The Early Exploitation of Shallow Geothermal Energy Resources -- 11.2 Geological and Hydrogeological Framework -- 11.3 Characterisation of Geothermal Exploitation -- 11.4 The Zaragoza Geothermal Monitoring Network -- 11.5 Impact of Thermal Discharges from Shallow Geothermal Installations on the Aquifer -- 11.5.1 Thermal Impact -- 11.5.2 Chemical Impact -- 11.5.3 Microbiological Impact -- 11.6 The 3D Numerical Model of Groundwater Flow and Heat Transport -- 11.7 Criteria and Policy for Adopted by Resource Managers -- 11.8 Current Situation. The Procedure for Authorisation of Thermal Discharges and Thermal Impact Assessment Studies -- 11.8.1 Authorisation Procedure for a Thermal Discharge -- References -- 12 Example of Application (II): The Exploitation of Shallow Geothermal Energy Resources in the Canary Islands -- 12.1 Renewable Energy in the Canary Islands -- 12.2 Shallow Geothermal Installations in the Canary Islands 12.2.1 Geological and Hydrogeological Framework -- 12.2.2 Impact of the Energy Transition Through Shallow Geothermal Energy -- 12.2.3 Environmental and Economic Benefits -- References Geothermal resources Geothermal resources-Mathematical models Geothermik (DE-588)4020285-9 gnd rswk-swf Geothermik (DE-588)4020285-9 s DE-604 Garrido Schneider, Eduardo Antonio Sonstige oth Mejías Moreno, Miguel Sonstige oth Santamarta Cerezal, Juan Carlos Sonstige oth Erscheint auch als Druck-Ausgabe García Gil, Alejandro Shallow Geothermal Energy Cham : Springer International Publishing AG,c2022 9783030922573 |
spellingShingle | García Gil, Alejandro Shallow Geothermal Energy Theory and Application Intro -- Contents -- About the Authors -- Abbreviations -- Symbols -- Superscripts -- Superscripts -- 1 Introduction -- 1.1 Background -- 1.2 Shallow Geothermal Energy -- 1.2.1 Geothermal Energy -- 1.2.2 Types and Classification of Geothermal Energy -- 1.2.3 Shallow Geothermal Energy -- 1.2.4 Brief History of Shallow Geothermal Energy -- References -- 2 Theoretical Background -- 2.1 Thermodynamic Principles -- 2.1.1 Concept of Energy -- 2.1.2 Temperature and Heat -- 2.1.3 Heat Transfer Mechanisms -- 2.1.4 First Law of Thermodynamics -- 2.1.5 Carnot Cycle -- 2.1.6 Second Law of Thermodynamics -- 2.1.7 Isoentropic Process -- 2.2 Heat Transfer -- 2.2.1 Porous Media and Its Approximation to a Continuous Media -- 2.2.2 Heat Conduction Mechanism -- 2.2.3 Heat Convection Mechanism -- 2.2.4 Hydrodynamic Heat Dispersion -- 2.2.5 Conduction-Convection-Heat Dispersion in a Porous Media -- 2.3 Parameters of Interest in Shallow Geothermal Energy -- 2.3.1 Thermal Conductivity (W m−1 K−1) -- 2.3.2 Thermal Resistivity R (K W−1) -- 2.3.3 Thermal Expansion (K−1) -- 2.3.4 Density (kg m−3) -- 2.3.5 Specific Heat Capacity c (J kg−1 K−1) -- 2.3.6 Thermal Diffusivity α (m2 s−1) -- 2.3.7 Viscosity µ (Pa s) -- 2.3.8 Reynolds Number Re (−) -- 2.3.9 Fourier Number Fo (−) -- 2.3.10 Peclet Number Pe (−) -- 2.3.11 Porosity φ (−) -- 2.4 Fluid Mechanics in Porous Media -- 2.4.1 Darcy's Law -- 2.4.2 General Groundwater Flow Equation -- References -- 3 Underground Thermal Regime -- 3.1 Energy Balance of the Earth-Atmosphere System -- 3.2 Deep Geothermal Upward Heat Flow -- 3.2.1 Underground Temperature Profile -- 3.3 Regional Groundwater Flow and Heat Advection -- 3.4 Heat Exchange with Surface Water Bodies -- 3.5 Heat Exchange with Urban Structures -- References -- 4 Geothermal Heat Pump -- 4.1 Thermal Installations -- 4.1.1 External Heat Exchange Systems 4.1.2 Heat Production Systems -- 4.1.3 Heat Distribution Systems -- 4.1.4 Internal Heat Exchange Systems -- 4.2 Heat Pumps -- 4.3 Heat Transfer Through the Vapour Compression Cycle -- 4.3.1 Ideal Vapour Compression Cycle -- 4.3.2 Real Vapour Compression Cycle -- 4.4 Reversibility -- 4.5 Operating Mode of Heat Pumps -- 4.6 Performance -- 4.7 CO2 Emissions -- 4.8 Types of Heat Pumps -- 4.9 Geothermal Heat Pumps -- References -- 5 Shallow Geothermal Systems with Closed-Loop Geothermal Heat Exchangers -- 5.1 General Characteristics -- 5.2 Closed-Loop Geothermal Heat Exchangers -- 5.2.1 Types of Geothermal Heat Exchangers -- 5.2.2 Grids of Closed-Loop Geothermal Heat Exchangers (BHEs) -- 5.2.3 Drilling Systems in the Construction of Geothermal Heat Exchangers -- 5.3 Heat Transfer in Closed Geothermal Heat Exchangers -- 5.3.1 Heat Transfer Equation for Multicomponent Systems -- 5.3.2 General Heat Transfer Equation for Closed Geothermal Heat Exchangers -- 5.3.3 Heat Transfer Equations for the Main Closed Geothermal Heat Exchanger Designs -- 5.3.4 Analytical Models of Heat Transfer in Closed Geothermal Heat Exchangers -- 5.4 Heat Transfer with the Ground -- 5.4.1 Infinite Linear Source Model (ILS) -- 5.4.2 Infinite Cylindrical Source (ICS) Model -- 5.4.3 Finite Linear Source Model (FLS) -- 5.4.4 Moving Infinite Linear Source Model (MILS) -- 5.4.5 Numerical Models -- 5.5 Horizontal Closed-Loop Geothermal Heat Exchangers -- 5.5.1 Types of Horizontal Geothermal Heat Exchangers -- 5.6 Borehole Thermal Energy Storage (BTES) -- 5.7 Thermoactive Geostructures -- 5.7.1 Thermoactive Piles -- 5.7.2 Thermoactive Walls -- 5.7.3 Thermoactive Tunnels -- References -- 6 Shallow Geothermal Systems with Open-Loop Geothermal Heat Exchangers -- 6.1 Shallow Geothermal Installations with Open-Loop Geothermal Heat Exchangers 6.2 Components of an Open-Loop Geothermal Heat Exchanger -- 6.3 Design, Construction and Operation -- 6.4 Heat Transfer with the Ground -- 6.5 Chemical Quality of Groundwater -- 6.5.1 Reducing the Lifetime of Open-Loop Geothermal Heat Exchangers -- 6.6 Numerical Modelling of Groundwater Flow and Heat Transport -- 6.7 Aquifer Thermal Energy Storage (ATES) -- 6.7.1 Thermal Performance in ATES Systems -- 6.8 Thermal Use of Mine Water -- References -- 7 Obtaining Terrain Thermal Parameters -- 7.1 Estimation of Laboratory Thermal Parameters -- 7.1.1 Tests for the Estimation of Thermal Conductivity in the Laboratory -- 7.2 Thermal Response Test (TRT) -- 7.2.1 Performance of TRTs -- 7.2.2 Interpretation of Results Obtained from TRT Testing -- 7.3 Thermal Tracer Test (TTT) -- 7.4 Field Estimation of Hydraulic Parameters -- References -- 8 Environmental Impacts -- 8.1 Thermal Impacts -- 8.2 Geochemical Impacts -- 8.3 Ecological Impacts -- 8.4 Geotechnical Impacts -- References -- 9 Management and Governance of Shallow Geothermal Energy Resources -- 9.1 Management of Shallow Geothermal Energy Resources -- 9.1.1 Shallow Geothermal Energy Potential -- 9.1.2 Existing Management Approaches -- 9.1.3 Management Concepts -- 9.2 Governance Policies -- 9.3 Overall Structure of the Management Framework -- 9.3.1 Sustainable Development and Exploitation of Shallow Geothermal Energy Resources -- 9.3.2 Environmentally Friendly Use of Shallow Geothermal Energy Resources -- 9.3.3 Exploitation of Shallow Geothermal Resources in Coordination with Other Subsoil Uses -- 9.3.4 Effective Management of Shallow Geothermal Resources -- 9.4 Governance Model -- References -- 10 Legal Framework for Regulation -- 10.1 Policies, Strategies and Regulatory Standards in the European Union for the Promotion of Shallow Geothermal Energy 10.1.1 Policies and Strategies for the Promotion of Renewable Energies -- 10.1.2 Regulatory Standards for the Increase of Renewable Energies -- 10.2 European Regulatory Legal Framework for the Use of Shallow Geothermal Energy -- 10.2.1 Legal Framework at the National Level of Member States -- 10.2.2 European Regulatory Legal Framework for the Protection of the Groundwater Public Domain -- 10.3 Legal Framework for Regulation in Spain -- 10.3.1 Legal Definition of Shallow Geothermal Energy in Spain -- 10.3.2 Technical Guidelines for the Implementation of Good Practices -- 10.3.3 Regulations for the Use of Shallow Geothermal Installations -- 10.4 Special Requirements for the Installation and Operation of Shallow Geothermal Installations -- 10.5 Future Need for Adaptation of the Spanish Regulatory Framework -- References -- 11 Example of Application (I): The Management of Shallow Geothermal Energy Resources in the City of Zaragoza -- 11.1 The Early Exploitation of Shallow Geothermal Energy Resources -- 11.2 Geological and Hydrogeological Framework -- 11.3 Characterisation of Geothermal Exploitation -- 11.4 The Zaragoza Geothermal Monitoring Network -- 11.5 Impact of Thermal Discharges from Shallow Geothermal Installations on the Aquifer -- 11.5.1 Thermal Impact -- 11.5.2 Chemical Impact -- 11.5.3 Microbiological Impact -- 11.6 The 3D Numerical Model of Groundwater Flow and Heat Transport -- 11.7 Criteria and Policy for Adopted by Resource Managers -- 11.8 Current Situation. The Procedure for Authorisation of Thermal Discharges and Thermal Impact Assessment Studies -- 11.8.1 Authorisation Procedure for a Thermal Discharge -- References -- 12 Example of Application (II): The Exploitation of Shallow Geothermal Energy Resources in the Canary Islands -- 12.1 Renewable Energy in the Canary Islands -- 12.2 Shallow Geothermal Installations in the Canary Islands 12.2.1 Geological and Hydrogeological Framework -- 12.2.2 Impact of the Energy Transition Through Shallow Geothermal Energy -- 12.2.3 Environmental and Economic Benefits -- References Geothermal resources Geothermal resources-Mathematical models Geothermik (DE-588)4020285-9 gnd |
subject_GND | (DE-588)4020285-9 |
title | Shallow Geothermal Energy Theory and Application |
title_auth | Shallow Geothermal Energy Theory and Application |
title_exact_search | Shallow Geothermal Energy Theory and Application |
title_full | Shallow Geothermal Energy Theory and Application |
title_fullStr | Shallow Geothermal Energy Theory and Application |
title_full_unstemmed | Shallow Geothermal Energy Theory and Application |
title_short | Shallow Geothermal Energy |
title_sort | shallow geothermal energy theory and application |
title_sub | Theory and Application |
topic | Geothermal resources Geothermal resources-Mathematical models Geothermik (DE-588)4020285-9 gnd |
topic_facet | Geothermal resources Geothermal resources-Mathematical models Geothermik |
work_keys_str_mv | AT garciagilalejandro shallowgeothermalenergytheoryandapplication AT garridoschneidereduardoantonio shallowgeothermalenergytheoryandapplication AT mejiasmorenomiguel shallowgeothermalenergytheoryandapplication AT santamartacerezaljuancarlos shallowgeothermalenergytheoryandapplication |