Deep Learning for Cognitive Computing Systems Technological Advancements and Applications

Cognitive computing simulates human thought processes with self-learning algorithms that utilize data mining, pattern recognition, and natural language processing. The integration of deep learning improves the performance of Cognitive computing systems in many applications, helping in utilizing hete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Sumithra, M. G. (HerausgeberIn), Iwendi, Celestine (HerausgeberIn), Kumar Dhanaraj, Rajesh (HerausgeberIn), Merline Manoharan, Anto (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin ; Boston De Gruyter [2022]
Schriftenreihe:De Gruyter series on smart computing applications volume 7
Schlagworte:
Online-Zugang:DE-1043
DE-1046
DE-858
DE-Aug4
DE-573
DE-898
DE-859
DE-860
DE-91
DE-706
DE-739
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV048646717
003 DE-604
005 20241111
007 cr|uuu---uuuuu
008 230112s2022 xx o|||| 00||| eng d
020 |a 9783110750584  |9 978-3-11-075058-4 
024 7 |a 10.1515/9783110750584  |2 doi 
035 |a (ZDB-23-DGG)9783110750584 
035 |a (OCoLC)1362873221 
035 |a (DE-599)BVBBV048646717 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-1043  |a DE-1046  |a DE-858  |a DE-Aug4  |a DE-859  |a DE-860  |a DE-739  |a DE-91  |a DE-573  |a DE-898  |a DE-706 
084 |a DAT 000  |2 stub 
084 |a TEC 000  |2 stub 
245 1 0 |a Deep Learning for Cognitive Computing Systems  |b Technological Advancements and Applications  |c ed. by M.G. Sumithra, Rajesh Kumar Dhanaraj, Celestine Iwendi, Anto Merline Manoharan 
264 1 |a Berlin ; Boston  |b De Gruyter  |c [2022] 
264 4 |c © 2023 
300 |a 1 Online-Ressource (IX, 199 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a De Gruyter series on smart computing applications  |v volume 7 
520 |a Cognitive computing simulates human thought processes with self-learning algorithms that utilize data mining, pattern recognition, and natural language processing. The integration of deep learning improves the performance of Cognitive computing systems in many applications, helping in utilizing heterogeneous data sets and generating meaningful insights 
650 4 |a Big Data 
650 4 |a Cognitive Computing 
650 4 |a Deep Learning 
650 4 |a Künstliche Intelligenz 
650 4 |a Maschinelles Lernen 
700 1 |a Sumithra, M. G.  |4 edt 
700 1 |a Iwendi, Celestine  |4 edt 
700 1 |a Kumar Dhanaraj, Rajesh  |4 edt 
700 1 |a Merline Manoharan, Anto  |4 edt 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9783110750508 
830 0 |a De Gruyter series on smart computing applications  |v volume 7  |w (DE-604)BV047463140  |9 7 
856 4 0 |u https://doi.org/10.1515/9783110750584  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-23-DGG 
912 |a ZDB-23-DEI 
940 1 |q ZDB-23-DEI16 
943 1 |a oai:aleph.bib-bvb.de:BVB01-034021588 
966 e |u https://doi.org/10.1515/9783110750584  |l DE-1043  |p ZDB-23-DGG  |q FAB_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9783110750584  |l DE-1046  |p ZDB-23-DGG  |q FAW_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9783110750584  |l DE-858  |p ZDB-23-DGG  |q FCO_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9783110750584  |l DE-Aug4  |p ZDB-23-DGG  |q FHA_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9783110750584  |l DE-573  |p ZDB-23-DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9783110750584?locatt=mode:legacy  |l DE-898  |p ZDB-23-DEI  |q ZDB-23-DEI16  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9783110750584  |l DE-859  |p ZDB-23-DGG  |q FKE_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9783110750584  |l DE-860  |p ZDB-23-DGG  |q FLA_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9783110750584  |l DE-91  |p ZDB-23-DEI  |q TUM_Paketkauf_2022  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9783110750584  |l DE-706  |p ZDB-23-DEI  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9783110750584  |l DE-739  |p ZDB-23-DGG  |q UPA_PDA_DGG  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2746551
_version_ 1820853997874970624
any_adam_object
author2 Sumithra, M. G.
Iwendi, Celestine
Kumar Dhanaraj, Rajesh
Merline Manoharan, Anto
author2_role edt
edt
edt
edt
author2_variant m g s mg mgs
c i ci
d r k dr drk
m a m ma mam
author_facet Sumithra, M. G.
Iwendi, Celestine
Kumar Dhanaraj, Rajesh
Merline Manoharan, Anto
building Verbundindex
bvnumber BV048646717
classification_tum DAT 000
TEC 000
collection ZDB-23-DGG
ZDB-23-DEI
ctrlnum (ZDB-23-DGG)9783110750584
(OCoLC)1362873221
(DE-599)BVBBV048646717
discipline Technik
Informatik
doi_str_mv 10.1515/9783110750584
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03357nam a2200637zcb4500</leader><controlfield tag="001">BV048646717</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241111 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230112s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110750584</subfield><subfield code="9">978-3-11-075058-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110750584</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110750584</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1362873221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048646717</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep Learning for Cognitive Computing Systems</subfield><subfield code="b">Technological Advancements and Applications</subfield><subfield code="c">ed. by M.G. Sumithra, Rajesh Kumar Dhanaraj, Celestine Iwendi, Anto Merline Manoharan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 199 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series on smart computing applications</subfield><subfield code="v">volume 7</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cognitive computing simulates human thought processes with self-learning algorithms that utilize data mining, pattern recognition, and natural language processing. The integration of deep learning improves the performance of Cognitive computing systems in many applications, helping in utilizing heterogeneous data sets and generating meaningful insights</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cognitive Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maschinelles Lernen</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sumithra, M. G.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iwendi, Celestine</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar Dhanaraj, Rajesh</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merline Manoharan, Anto</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783110750508</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series on smart computing applications</subfield><subfield code="v">volume 7</subfield><subfield code="w">(DE-604)BV047463140</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DEI</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DEI16</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034021588</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="q">ZDB-23-DEI16</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110750584</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV048646717
illustrated Not Illustrated
indexdate 2024-12-24T09:39:38Z
institution BVB
isbn 9783110750584
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-034021588
oclc_num 1362873221
open_access_boolean
owner DE-1043
DE-1046
DE-858
DE-Aug4
DE-859
DE-860
DE-739
DE-91
DE-BY-TUM
DE-573
DE-898
DE-BY-UBR
DE-706
owner_facet DE-1043
DE-1046
DE-858
DE-Aug4
DE-859
DE-860
DE-739
DE-91
DE-BY-TUM
DE-573
DE-898
DE-BY-UBR
DE-706
physical 1 Online-Ressource (IX, 199 Seiten)
psigel ZDB-23-DGG
ZDB-23-DEI
ZDB-23-DEI16
ZDB-23-DGG FAB_PDA_DGG
ZDB-23-DGG FAW_PDA_DGG
ZDB-23-DGG FCO_PDA_DGG
ZDB-23-DGG FHA_PDA_DGG
ZDB-23-DEI ZDB-23-DEI16
ZDB-23-DGG FKE_PDA_DGG
ZDB-23-DGG FLA_PDA_DGG
ZDB-23-DEI TUM_Paketkauf_2022
ZDB-23-DGG UPA_PDA_DGG
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher De Gruyter
record_format marc
series De Gruyter series on smart computing applications
series2 De Gruyter series on smart computing applications
spellingShingle Deep Learning for Cognitive Computing Systems Technological Advancements and Applications
De Gruyter series on smart computing applications
Big Data
Cognitive Computing
Deep Learning
Künstliche Intelligenz
Maschinelles Lernen
title Deep Learning for Cognitive Computing Systems Technological Advancements and Applications
title_auth Deep Learning for Cognitive Computing Systems Technological Advancements and Applications
title_exact_search Deep Learning for Cognitive Computing Systems Technological Advancements and Applications
title_full Deep Learning for Cognitive Computing Systems Technological Advancements and Applications ed. by M.G. Sumithra, Rajesh Kumar Dhanaraj, Celestine Iwendi, Anto Merline Manoharan
title_fullStr Deep Learning for Cognitive Computing Systems Technological Advancements and Applications ed. by M.G. Sumithra, Rajesh Kumar Dhanaraj, Celestine Iwendi, Anto Merline Manoharan
title_full_unstemmed Deep Learning for Cognitive Computing Systems Technological Advancements and Applications ed. by M.G. Sumithra, Rajesh Kumar Dhanaraj, Celestine Iwendi, Anto Merline Manoharan
title_short Deep Learning for Cognitive Computing Systems
title_sort deep learning for cognitive computing systems technological advancements and applications
title_sub Technological Advancements and Applications
topic Big Data
Cognitive Computing
Deep Learning
Künstliche Intelligenz
Maschinelles Lernen
topic_facet Big Data
Cognitive Computing
Deep Learning
Künstliche Intelligenz
Maschinelles Lernen
url https://doi.org/10.1515/9783110750584
volume_link (DE-604)BV047463140
work_keys_str_mv AT sumithramg deeplearningforcognitivecomputingsystemstechnologicaladvancementsandapplications
AT iwendicelestine deeplearningforcognitivecomputingsystemstechnologicaladvancementsandapplications
AT kumardhanarajrajesh deeplearningforcognitivecomputingsystemstechnologicaladvancementsandapplications
AT merlinemanoharananto deeplearningforcognitivecomputingsystemstechnologicaladvancementsandapplications