Transcranial magnetic and electrical brain stimulation for neurological disorders
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego, CA
Elsevier
[2022]
|
Online-Zugang: | DE-1050 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Inhaltsangabe:
- Front Cover
- TRANSCRANIAL MAGNETIC AND ELECTRICAL BRAIN STIMULATION FOR NEUROLOGICAL DISORDERS
- TRANSCRANIAL MAGNETIC AND ELECTRICAL BRAIN STIMULATION FOR NEUROLOGICAL DISORDERS
- Copyright
- Dedication
- Contents
- About the authors
- Preface
- Acknowledgment
- 1
- Foundation of electromagnetic theory
- 1.1 Introduction
- 1.2 Vector analysis
- 1.2.1 Vector algebra
- 1.2.1.1 Sum of two vectors
- 1.2.1.2 Subtraction of two vectors
- 1.2.1.3 Multiplication of two vectors
- 1.2.2 Scalar product of two vectors
- 1.2.3 Vector product of two vectors
- 1.2.3.1 Devision of two vectors
- 1.2.4 Vector gradient
- 1.2.5 Vector integration
- 1.2.6 Vector divergence
- 1.2.7 Vector curl
- 1.2.8 Vector differential operator
- 1.3 Further developments
- 1.4 Electrostatics
- 1.4.1 The Coulomb's law
- 1.4.2 The electric field
- 1.4.3 The Gauss's law
- 1.5 Solution of electrostatics problems
- 1.5.1 Poisson's equation
- 1.5.1.1 Rectangular or cartesian coordinate
- 1.5.1.2 Cylindrical coordinate
- 1.5.1.3 Spherical coordinate
- 1.5.2 Laplace's equation
- 1.6 Electrostatics energy
- 1.6.1 Potential energy of a group of point charges
- 1.6.2 Electrostatic energy of a charge distribution
- 1.6.3 Forces and torques
- 1.6.3.1 The rate of energy transfer (per unit volume) from a region of space equals the rate of work done on a charge distribution ...
- 1.7 Mx's equations
- 1.8 The Law of Biot and Savart
- 1.9 The lorentz transformation
- 1.10 Electric field of a moving charge
- 1.11 Interaction between two moving charges
- 1.12 Elementary applications of the Biot and Savart Law
- 1.12.1 Example
- one
- 1.12.2 Example
- two
- 1.12.3 Example
- three
- 1.12.4 Example
- four
- 1.12.5 The infinite filament wire application of Biot-Savart law
- 1.12.5.1 Example
- one
- 1.12.5.2 Example
- two
- 1.13 A's law
- 1.13.1 Example
- one
- 1.13.2 Example
- two
- 1.13.3 Example
- three
- 1.13.4 Example
- four
- 1.13.5 Example
- five
- 1.13.6 A's law in point form
- 1.13.6.1 Example
- one
- 1.14 Scalar and vector potentials
- 1.15 Hall effect
- References
- 2
- All about wave equations
- 2.1 Introduction
- 2.2 The classical wave equation and separation of variables
- 2.3 Standing waves
- 2.4 Seiche wave
- 2.4.1 Lake seiche
- 2.4.2 Sea and Bay seiche
- 2.5 Underwater or internal waves
- 2.6 Maxwell's equations and electromagnetic waves
- 2.7 Scalar and vector potentials
- 2.8 Gauge transformations, Lorentz gauge, and Coulomb gauge
- 2.9 Infrastructure, characteristic, derivation, and properties of scalar waves
- 2.9.1 Derivation of the scalar waves
- 2.9.1.1 Near-field difficulties
- 2.9.1.2 Far-filed transition
- 2.9.1.3 Scalar wave model
- 2.9.1.4 Double-frequent oscillation of size
- 2.9.1.5 Electric and magnetic scalar wave
- 2.9.1.6 Scalar wave properties
- 2.9.1.7 Comparison of the parts of Tesla and Hertz