Beginning Azure Synapse Analytics Transition from Data Warehouse to Data Lakehouse

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Shiyal, Bhadresh (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berkeley, CA Apress L. P. 2021
Schlagworte:
Online-Zugang:DE-2070s
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV048523185
003 DE-604
005 20230301
007 cr|uuu---uuuuu
008 221020s2021 xx o|||| 00||| eng d
020 |a 9781484270615  |q (electronic bk.)  |9 9781484270615 
020 |z 9781484270608  |9 9781484270608 
035 |a (ZDB-30-PQE)EBC6648095 
035 |a (ZDB-30-PAD)EBC6648095 
035 |a (ZDB-89-EBL)EBL6648095 
035 |a (OCoLC)1257400854 
035 |a (DE-599)BVBBV048523185 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-2070s 
100 1 |a Shiyal, Bhadresh  |e Verfasser  |4 aut 
245 1 0 |a Beginning Azure Synapse Analytics  |b Transition from Data Warehouse to Data Lakehouse 
264 1 |a Berkeley, CA  |b Apress L. P.  |c 2021 
264 4 |c ©2021 
300 |a 1 Online-Ressource (263 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
505 8 |a Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Core Data and Analytics Concepts -- Core Data Concepts -- What Is Data? -- Structured Data -- Semi-structured Data -- Unstructured Data -- Data Processing Methods -- Batch Data Processing -- Streaming or Real-Time Data Processing -- Relational Data and Its Characteristics -- Non-Relational Data and Its Characteristics -- Core Data Analytics Concepts -- What Is Data Analytics? -- Data Ingestion -- Data Exploration -- Data Processing -- ETL -- ELT -- ELT / ETL Tools -- Data Visualization -- Data Analytics Categories -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Cognitive Analytics -- Summary -- Chapter 2: Modern Data Warehouses and Data Lakehouses -- What Is a Data Warehouse? -- Core Data Warehouse Concepts -- Data Model -- Model Types -- Schema Types -- Metadata -- Why Do We Need a Data Warehouse? -- Efficient Decision-Making -- Separation of Concerns -- Single Version of the Truth -- Data Restructuring -- Self-Service BI -- Historical Data -- Security -- Data Quality -- Data Mining -- More Revenues -- What Is a Modern Data Warehouse? -- Difference Between Traditional &amp -- Modern Data Warehouses -- Cloud vs. On-Premises -- Separation of Compute and Storage Resources -- Cost -- Scalability -- ETL vs. ELT -- Disaster Recovery -- Overall Architecture -- Data Lakehouse -- What Is a Data Lake? -- What Is Delta Lake? -- What Is Apache Spark? -- What Is a Data Lakehouse? -- Characteristics of a Data Lakehouse -- Various Data Types -- AI -- Decoupled Compute and Storage Resources -- Open Source Storage Format -- Data Analytics and BI Tools -- ACID Properties -- Differences Between a Data Warehouse and a Data Lakehouse -- Architecture -- Access to Raw Data 
505 8 |a Open Source vs. Proprietary -- Workloads -- Query Engines -- Data Processing -- Real-Time Data -- Examples of Data Lakehouses -- Azure Synapse Analytics -- Databricks -- Benefits of Data Lakehouse -- Support for All Types of Data -- Time to Market -- More Cost Effective -- AI -- Reduction in ETL/ELT Jobs -- Usage of Open Source Tools and Technologies -- Efficient and Easy Data Governance -- Drawbacks of Data Lakehouse -- Monolithic Architecture -- Technical Infancy -- Migration Cost -- Lack of Many Products/Options -- Scarcity of Skilled Technical Resources -- Summary -- Chapter 3: Introduction to Azure Synapse Analytics -- What Is Azure Synapse Analytics? -- Azure Synapse Analytics vs. Azure SQL Data Warehouse -- Why Should You Learn Azure Synapse Analytics? -- Main Features of Azure Synapse Analytics -- Unified Data Analytics Experience -- Powerful Data Insights -- Unlimited Scale -- Security, Privacy, and Compliance -- HTAP -- Key Service Capabilities of Azure Synapse Analytics -- Data Lake Exploration -- Multiple Language Support -- Deeply Integrated Apache Spark -- Serverless Synapse SQL Pool -- Hybrid Data Integration -- Power BI Integration -- AI Integration -- Enterprise Data Warehousing -- Seamless Streaming Analytics -- Workload Management -- Advanced Security -- Summary -- Chapter 4: Architecture and Its Main Components -- High-Level Architecture -- Main Components of Architecture -- Synapse SQL -- Compute Layer -- Dedicated Synapse SQL Pool -- Serverless Synapse SQL Pool -- Storage Layer -- Synapse Spark or Apache Spark -- Synapse Pipelines -- Synapse Studio -- Synapse Link -- Summary -- Chapter 5: Synapse SQL -- Synapse SQL Architecture Components -- Massively Parallel Processing Engine -- Distributed Query Processing Engine -- Control Node -- Compute Nodes -- Data Movement Service -- Distribution -- Hash Distribution 
505 8 |a Round-Robin Distribution -- Replication-based Distribution -- Azure Storage -- Dedicated or Provisioned Synapse SQL Pool -- Serverless or On-Demand Synapse SQL Pool -- Synapse SQL Feature Comparison -- Database Object Types -- Query Language -- Security -- Tools -- Storage Options -- Data Formats -- Resource Consumption Model for Synapse SQL -- Synapse SQL Best Practices -- Best Practices for Serverless Synapse SQL Pool -- Best Practices for Dedicated Synapse SQL Pool -- How-To's -- Create a Dedicated Synapse SQL Pool -- Create a Serverless or On-Demand Synapse SQL Pool -- Load Data Using COPY Statement in Dedicated Synapse SQL Pool -- Ingest Data into Azure Data Lake Storage Gen2 -- Summary -- Chapter 6: Synapse Spark -- What Is Apache Spark? -- What Is Synapse Spark in Azure Synapse Analytics? -- Synapse Spark Features &amp -- Capabilities -- Speed -- Faster Start Time -- Ease of Creation -- Ease of Use -- Security -- Automatic Scalability -- Separation of Concerns -- Multiple Language Support -- Integration with IDEs -- Pre-loaded Libraries -- REST APIs -- Delta Lake and Its Importance in Synapse Spark -- Synapse Spark Job Optimization -- Data Format -- Memory Management -- Data Serialization -- Data Caching -- Data Abstraction -- Join and Shuffle Optimization -- Bucketing -- Hyperspace Indexing -- Synapse Spark Machine Learning -- Data Preparation and Exploration -- Build Machine Learning Models -- Train Machine Learning Models -- Model Deployment and Scoring -- How-To's -- How to Create a Synapse Spark Pool -- How to Create and Submit Apache Spark Job Definition in Synapse Studio Using Python -- How to Monitor Synapse Spark Pools Using Synapse Studio -- Summary -- Chapter 7: Synapse Pipelines -- Overview of Azure Data Factory -- Overview of Synapse Pipelines -- Activities -- Pipelines -- Linked Services -- Dataset -- Integration Runtimes (IR) 
505 8 |a Azure Integration Runtime (Azure IR) -- Self-Hosted Integration Runtimes (SHIR) -- Azure SSIS Integration Runtimes (Azure SSIS IR) -- Control Flow -- Parameters -- Data Flow -- Data Movement Activities -- Category: Azure -- Category: Database -- Category: NoSQL -- Category: File -- Category: Generic -- Category: Services and Applications -- Data Transformation Activities -- Control Flow Activities -- Copy Pipeline Example -- Transformation Pipeline Example -- Pipeline Triggers -- Summary -- Chapter 8: Synapse Workspace and Studio -- What Is a Synapse Analytics Workspace? -- Synapse Analytics Workspace Components and Features -- Azure Data Lake Storage Gen2 Account and File System -- Serverless Synapse SQL Pool -- Shared Metadata Management -- Code Artifacts -- What Is Synapse Studio? -- Main Features of Synapse Studio -- Home Hub -- Data Hub -- Develop Hub -- Integrate Hub -- Monitor Hub -- Integration -- Activities -- Manage Hub -- Analytics Pools -- External Connections -- Integration -- Security -- Synapse Studio Capabilities -- Data Preparation -- Data Management -- Data Exploration -- Data Warehousing -- Data Visualization -- Machine Learning -- Power BI in Synapse Studio -- How-To's -- How to Create or Provision a New Azure Synapse Analytics Workspace Using Azure Portal -- How to Launch Azure Synapse Studio -- How to Link Power BI with Azure Synapse Studio -- Summary -- Chapter 9: Synapse Link -- OLTP vs. OLAP -- What Is HTAP? -- Benefits of HTAP -- No-ETL Analytics -- Instant Insights -- Reduced Data Duplication -- Simplified Technical Architecture -- What Is Azure Synapse Link? -- Azure Cosmos DB -- Azure Cosmos DB Analytical Store -- Columnar Storage -- Decoupling of Operational Store -- Automatic Data Synchronization -- SQL API and MongoDB API -- Analytical TTL -- Automatic Schema Updates -- Cost-Effective Archiving -- Scalability 
505 8 |a When to Use Azure Synapse Link for Cosmos DB -- Azure Synapse Link Limitations -- Azure Synapse Link Use Cases -- Industrial IOT -- Predictive Maintenance Pipeline -- Operational Reporting -- Real-Time Applications -- Real-Time Personalization for E-Commerce Users -- How-To's -- How to Enable Azure Synapse Link for Azure Cosmos DB -- How to Create an Azure Cosmos DB Container with Analytical Store Using Azure Portal -- How to Connect to Azure Synapse Link for Azure Cosmos DB Using Azure Portal -- Summary -- Chapter 10: Azure Synapse Analytics Use Cases and Reference Architecture -- Where Should You Use Azure Synapse Analytics? -- Large Volume of Data -- Disparate Sources of Data -- Data Transformation -- Batch or Streaming Data -- Where Should You Not Use Azure Synapse Analytics? -- Use Cases for Azure Synapse Analytics -- Financial Services -- Manufacturing -- Retail -- Healthcare -- Reference Architectures for Azure Synapse Analytics -- Modern Data Warehouse Architecture -- Real-Time Analytics on Big Data Architecture -- Summary -- Index 
650 4 |a Data warehousing-Management 
650 4 |a Microsoft Azure (Computing platform) 
653 6 |a Electronic books 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Shiyal, Bhadresh  |t Beginning Azure Synapse Analytics  |d Berkeley, CA : Apress L. P.,c2021  |z 9781484270608 
912 |a ZDB-30-PQE 
943 1 |a oai:aleph.bib-bvb.de:BVB01-033900033 
966 e |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6648095  |l DE-2070s  |p ZDB-30-PQE  |q HWR_PDA_PQE_Kauf  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819313838284079104
any_adam_object
author Shiyal, Bhadresh
author_facet Shiyal, Bhadresh
author_role aut
author_sort Shiyal, Bhadresh
author_variant b s bs
building Verbundindex
bvnumber BV048523185
collection ZDB-30-PQE
contents Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Core Data and Analytics Concepts -- Core Data Concepts -- What Is Data? -- Structured Data -- Semi-structured Data -- Unstructured Data -- Data Processing Methods -- Batch Data Processing -- Streaming or Real-Time Data Processing -- Relational Data and Its Characteristics -- Non-Relational Data and Its Characteristics -- Core Data Analytics Concepts -- What Is Data Analytics? -- Data Ingestion -- Data Exploration -- Data Processing -- ETL -- ELT -- ELT / ETL Tools -- Data Visualization -- Data Analytics Categories -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Cognitive Analytics -- Summary -- Chapter 2: Modern Data Warehouses and Data Lakehouses -- What Is a Data Warehouse? -- Core Data Warehouse Concepts -- Data Model -- Model Types -- Schema Types -- Metadata -- Why Do We Need a Data Warehouse? -- Efficient Decision-Making -- Separation of Concerns -- Single Version of the Truth -- Data Restructuring -- Self-Service BI -- Historical Data -- Security -- Data Quality -- Data Mining -- More Revenues -- What Is a Modern Data Warehouse? -- Difference Between Traditional &amp -- Modern Data Warehouses -- Cloud vs. On-Premises -- Separation of Compute and Storage Resources -- Cost -- Scalability -- ETL vs. ELT -- Disaster Recovery -- Overall Architecture -- Data Lakehouse -- What Is a Data Lake? -- What Is Delta Lake? -- What Is Apache Spark? -- What Is a Data Lakehouse? -- Characteristics of a Data Lakehouse -- Various Data Types -- AI -- Decoupled Compute and Storage Resources -- Open Source Storage Format -- Data Analytics and BI Tools -- ACID Properties -- Differences Between a Data Warehouse and a Data Lakehouse -- Architecture -- Access to Raw Data
Open Source vs. Proprietary -- Workloads -- Query Engines -- Data Processing -- Real-Time Data -- Examples of Data Lakehouses -- Azure Synapse Analytics -- Databricks -- Benefits of Data Lakehouse -- Support for All Types of Data -- Time to Market -- More Cost Effective -- AI -- Reduction in ETL/ELT Jobs -- Usage of Open Source Tools and Technologies -- Efficient and Easy Data Governance -- Drawbacks of Data Lakehouse -- Monolithic Architecture -- Technical Infancy -- Migration Cost -- Lack of Many Products/Options -- Scarcity of Skilled Technical Resources -- Summary -- Chapter 3: Introduction to Azure Synapse Analytics -- What Is Azure Synapse Analytics? -- Azure Synapse Analytics vs. Azure SQL Data Warehouse -- Why Should You Learn Azure Synapse Analytics? -- Main Features of Azure Synapse Analytics -- Unified Data Analytics Experience -- Powerful Data Insights -- Unlimited Scale -- Security, Privacy, and Compliance -- HTAP -- Key Service Capabilities of Azure Synapse Analytics -- Data Lake Exploration -- Multiple Language Support -- Deeply Integrated Apache Spark -- Serverless Synapse SQL Pool -- Hybrid Data Integration -- Power BI Integration -- AI Integration -- Enterprise Data Warehousing -- Seamless Streaming Analytics -- Workload Management -- Advanced Security -- Summary -- Chapter 4: Architecture and Its Main Components -- High-Level Architecture -- Main Components of Architecture -- Synapse SQL -- Compute Layer -- Dedicated Synapse SQL Pool -- Serverless Synapse SQL Pool -- Storage Layer -- Synapse Spark or Apache Spark -- Synapse Pipelines -- Synapse Studio -- Synapse Link -- Summary -- Chapter 5: Synapse SQL -- Synapse SQL Architecture Components -- Massively Parallel Processing Engine -- Distributed Query Processing Engine -- Control Node -- Compute Nodes -- Data Movement Service -- Distribution -- Hash Distribution
Round-Robin Distribution -- Replication-based Distribution -- Azure Storage -- Dedicated or Provisioned Synapse SQL Pool -- Serverless or On-Demand Synapse SQL Pool -- Synapse SQL Feature Comparison -- Database Object Types -- Query Language -- Security -- Tools -- Storage Options -- Data Formats -- Resource Consumption Model for Synapse SQL -- Synapse SQL Best Practices -- Best Practices for Serverless Synapse SQL Pool -- Best Practices for Dedicated Synapse SQL Pool -- How-To's -- Create a Dedicated Synapse SQL Pool -- Create a Serverless or On-Demand Synapse SQL Pool -- Load Data Using COPY Statement in Dedicated Synapse SQL Pool -- Ingest Data into Azure Data Lake Storage Gen2 -- Summary -- Chapter 6: Synapse Spark -- What Is Apache Spark? -- What Is Synapse Spark in Azure Synapse Analytics? -- Synapse Spark Features &amp -- Capabilities -- Speed -- Faster Start Time -- Ease of Creation -- Ease of Use -- Security -- Automatic Scalability -- Separation of Concerns -- Multiple Language Support -- Integration with IDEs -- Pre-loaded Libraries -- REST APIs -- Delta Lake and Its Importance in Synapse Spark -- Synapse Spark Job Optimization -- Data Format -- Memory Management -- Data Serialization -- Data Caching -- Data Abstraction -- Join and Shuffle Optimization -- Bucketing -- Hyperspace Indexing -- Synapse Spark Machine Learning -- Data Preparation and Exploration -- Build Machine Learning Models -- Train Machine Learning Models -- Model Deployment and Scoring -- How-To's -- How to Create a Synapse Spark Pool -- How to Create and Submit Apache Spark Job Definition in Synapse Studio Using Python -- How to Monitor Synapse Spark Pools Using Synapse Studio -- Summary -- Chapter 7: Synapse Pipelines -- Overview of Azure Data Factory -- Overview of Synapse Pipelines -- Activities -- Pipelines -- Linked Services -- Dataset -- Integration Runtimes (IR)
Azure Integration Runtime (Azure IR) -- Self-Hosted Integration Runtimes (SHIR) -- Azure SSIS Integration Runtimes (Azure SSIS IR) -- Control Flow -- Parameters -- Data Flow -- Data Movement Activities -- Category: Azure -- Category: Database -- Category: NoSQL -- Category: File -- Category: Generic -- Category: Services and Applications -- Data Transformation Activities -- Control Flow Activities -- Copy Pipeline Example -- Transformation Pipeline Example -- Pipeline Triggers -- Summary -- Chapter 8: Synapse Workspace and Studio -- What Is a Synapse Analytics Workspace? -- Synapse Analytics Workspace Components and Features -- Azure Data Lake Storage Gen2 Account and File System -- Serverless Synapse SQL Pool -- Shared Metadata Management -- Code Artifacts -- What Is Synapse Studio? -- Main Features of Synapse Studio -- Home Hub -- Data Hub -- Develop Hub -- Integrate Hub -- Monitor Hub -- Integration -- Activities -- Manage Hub -- Analytics Pools -- External Connections -- Integration -- Security -- Synapse Studio Capabilities -- Data Preparation -- Data Management -- Data Exploration -- Data Warehousing -- Data Visualization -- Machine Learning -- Power BI in Synapse Studio -- How-To's -- How to Create or Provision a New Azure Synapse Analytics Workspace Using Azure Portal -- How to Launch Azure Synapse Studio -- How to Link Power BI with Azure Synapse Studio -- Summary -- Chapter 9: Synapse Link -- OLTP vs. OLAP -- What Is HTAP? -- Benefits of HTAP -- No-ETL Analytics -- Instant Insights -- Reduced Data Duplication -- Simplified Technical Architecture -- What Is Azure Synapse Link? -- Azure Cosmos DB -- Azure Cosmos DB Analytical Store -- Columnar Storage -- Decoupling of Operational Store -- Automatic Data Synchronization -- SQL API and MongoDB API -- Analytical TTL -- Automatic Schema Updates -- Cost-Effective Archiving -- Scalability
When to Use Azure Synapse Link for Cosmos DB -- Azure Synapse Link Limitations -- Azure Synapse Link Use Cases -- Industrial IOT -- Predictive Maintenance Pipeline -- Operational Reporting -- Real-Time Applications -- Real-Time Personalization for E-Commerce Users -- How-To's -- How to Enable Azure Synapse Link for Azure Cosmos DB -- How to Create an Azure Cosmos DB Container with Analytical Store Using Azure Portal -- How to Connect to Azure Synapse Link for Azure Cosmos DB Using Azure Portal -- Summary -- Chapter 10: Azure Synapse Analytics Use Cases and Reference Architecture -- Where Should You Use Azure Synapse Analytics? -- Large Volume of Data -- Disparate Sources of Data -- Data Transformation -- Batch or Streaming Data -- Where Should You Not Use Azure Synapse Analytics? -- Use Cases for Azure Synapse Analytics -- Financial Services -- Manufacturing -- Retail -- Healthcare -- Reference Architectures for Azure Synapse Analytics -- Modern Data Warehouse Architecture -- Real-Time Analytics on Big Data Architecture -- Summary -- Index
ctrlnum (ZDB-30-PQE)EBC6648095
(ZDB-30-PAD)EBC6648095
(ZDB-89-EBL)EBL6648095
(OCoLC)1257400854
(DE-599)BVBBV048523185
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10139nam a2200445 c 4500</leader><controlfield tag="001">BV048523185</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230301 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">221020s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484270615</subfield><subfield code="q">(electronic bk.)</subfield><subfield code="9">9781484270615</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781484270608</subfield><subfield code="9">9781484270608</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6648095</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6648095</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6648095</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1257400854</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048523185</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shiyal, Bhadresh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beginning Azure Synapse Analytics</subfield><subfield code="b">Transition from Data Warehouse to Data Lakehouse</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress L. P.</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (263 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Core Data and Analytics Concepts -- Core Data Concepts -- What Is Data? -- Structured Data -- Semi-structured Data -- Unstructured Data -- Data Processing Methods -- Batch Data Processing -- Streaming or Real-Time Data Processing -- Relational Data and Its Characteristics -- Non-Relational Data and Its Characteristics -- Core Data Analytics Concepts -- What Is Data Analytics? -- Data Ingestion -- Data Exploration -- Data Processing -- ETL -- ELT -- ELT / ETL Tools -- Data Visualization -- Data Analytics Categories -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Cognitive Analytics -- Summary -- Chapter 2: Modern Data Warehouses and Data Lakehouses -- What Is a Data Warehouse? -- Core Data Warehouse Concepts -- Data Model -- Model Types -- Schema Types -- Metadata -- Why Do We Need a Data Warehouse? -- Efficient Decision-Making -- Separation of Concerns -- Single Version of the Truth -- Data Restructuring -- Self-Service BI -- Historical Data -- Security -- Data Quality -- Data Mining -- More Revenues -- What Is a Modern Data Warehouse? -- Difference Between Traditional &amp;amp -- Modern Data Warehouses -- Cloud vs. On-Premises -- Separation of Compute and Storage Resources -- Cost -- Scalability -- ETL vs. ELT -- Disaster Recovery -- Overall Architecture -- Data Lakehouse -- What Is a Data Lake? -- What Is Delta Lake? -- What Is Apache Spark? -- What Is a Data Lakehouse? -- Characteristics of a Data Lakehouse -- Various Data Types -- AI -- Decoupled Compute and Storage Resources -- Open Source Storage Format -- Data Analytics and BI Tools -- ACID Properties -- Differences Between a Data Warehouse and a Data Lakehouse -- Architecture -- Access to Raw Data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Open Source vs. Proprietary -- Workloads -- Query Engines -- Data Processing -- Real-Time Data -- Examples of Data Lakehouses -- Azure Synapse Analytics -- Databricks -- Benefits of Data Lakehouse -- Support for All Types of Data -- Time to Market -- More Cost Effective -- AI -- Reduction in ETL/ELT Jobs -- Usage of Open Source Tools and Technologies -- Efficient and Easy Data Governance -- Drawbacks of Data Lakehouse -- Monolithic Architecture -- Technical Infancy -- Migration Cost -- Lack of Many Products/Options -- Scarcity of Skilled Technical Resources -- Summary -- Chapter 3: Introduction to Azure Synapse Analytics -- What Is Azure Synapse Analytics? -- Azure Synapse Analytics vs. Azure SQL Data Warehouse -- Why Should You Learn Azure Synapse Analytics? -- Main Features of Azure Synapse Analytics -- Unified Data Analytics Experience -- Powerful Data Insights -- Unlimited Scale -- Security, Privacy, and Compliance -- HTAP -- Key Service Capabilities of Azure Synapse Analytics -- Data Lake Exploration -- Multiple Language Support -- Deeply Integrated Apache Spark -- Serverless Synapse SQL Pool -- Hybrid Data Integration -- Power BI Integration -- AI Integration -- Enterprise Data Warehousing -- Seamless Streaming Analytics -- Workload Management -- Advanced Security -- Summary -- Chapter 4: Architecture and Its Main Components -- High-Level Architecture -- Main Components of Architecture -- Synapse SQL -- Compute Layer -- Dedicated Synapse SQL Pool -- Serverless Synapse SQL Pool -- Storage Layer -- Synapse Spark or Apache Spark -- Synapse Pipelines -- Synapse Studio -- Synapse Link -- Summary -- Chapter 5: Synapse SQL -- Synapse SQL Architecture Components -- Massively Parallel Processing Engine -- Distributed Query Processing Engine -- Control Node -- Compute Nodes -- Data Movement Service -- Distribution -- Hash Distribution</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Round-Robin Distribution -- Replication-based Distribution -- Azure Storage -- Dedicated or Provisioned Synapse SQL Pool -- Serverless or On-Demand Synapse SQL Pool -- Synapse SQL Feature Comparison -- Database Object Types -- Query Language -- Security -- Tools -- Storage Options -- Data Formats -- Resource Consumption Model for Synapse SQL -- Synapse SQL Best Practices -- Best Practices for Serverless Synapse SQL Pool -- Best Practices for Dedicated Synapse SQL Pool -- How-To's -- Create a Dedicated Synapse SQL Pool -- Create a Serverless or On-Demand Synapse SQL Pool -- Load Data Using COPY Statement in Dedicated Synapse SQL Pool -- Ingest Data into Azure Data Lake Storage Gen2 -- Summary -- Chapter 6: Synapse Spark -- What Is Apache Spark? -- What Is Synapse Spark in Azure Synapse Analytics? -- Synapse Spark Features &amp;amp -- Capabilities -- Speed -- Faster Start Time -- Ease of Creation -- Ease of Use -- Security -- Automatic Scalability -- Separation of Concerns -- Multiple Language Support -- Integration with IDEs -- Pre-loaded Libraries -- REST APIs -- Delta Lake and Its Importance in Synapse Spark -- Synapse Spark Job Optimization -- Data Format -- Memory Management -- Data Serialization -- Data Caching -- Data Abstraction -- Join and Shuffle Optimization -- Bucketing -- Hyperspace Indexing -- Synapse Spark Machine Learning -- Data Preparation and Exploration -- Build Machine Learning Models -- Train Machine Learning Models -- Model Deployment and Scoring -- How-To's -- How to Create a Synapse Spark Pool -- How to Create and Submit Apache Spark Job Definition in Synapse Studio Using Python -- How to Monitor Synapse Spark Pools Using Synapse Studio -- Summary -- Chapter 7: Synapse Pipelines -- Overview of Azure Data Factory -- Overview of Synapse Pipelines -- Activities -- Pipelines -- Linked Services -- Dataset -- Integration Runtimes (IR)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Azure Integration Runtime (Azure IR) -- Self-Hosted Integration Runtimes (SHIR) -- Azure SSIS Integration Runtimes (Azure SSIS IR) -- Control Flow -- Parameters -- Data Flow -- Data Movement Activities -- Category: Azure -- Category: Database -- Category: NoSQL -- Category: File -- Category: Generic -- Category: Services and Applications -- Data Transformation Activities -- Control Flow Activities -- Copy Pipeline Example -- Transformation Pipeline Example -- Pipeline Triggers -- Summary -- Chapter 8: Synapse Workspace and Studio -- What Is a Synapse Analytics Workspace? -- Synapse Analytics Workspace Components and Features -- Azure Data Lake Storage Gen2 Account and File System -- Serverless Synapse SQL Pool -- Shared Metadata Management -- Code Artifacts -- What Is Synapse Studio? -- Main Features of Synapse Studio -- Home Hub -- Data Hub -- Develop Hub -- Integrate Hub -- Monitor Hub -- Integration -- Activities -- Manage Hub -- Analytics Pools -- External Connections -- Integration -- Security -- Synapse Studio Capabilities -- Data Preparation -- Data Management -- Data Exploration -- Data Warehousing -- Data Visualization -- Machine Learning -- Power BI in Synapse Studio -- How-To's -- How to Create or Provision a New Azure Synapse Analytics Workspace Using Azure Portal -- How to Launch Azure Synapse Studio -- How to Link Power BI with Azure Synapse Studio -- Summary -- Chapter 9: Synapse Link -- OLTP vs. OLAP -- What Is HTAP? -- Benefits of HTAP -- No-ETL Analytics -- Instant Insights -- Reduced Data Duplication -- Simplified Technical Architecture -- What Is Azure Synapse Link? -- Azure Cosmos DB -- Azure Cosmos DB Analytical Store -- Columnar Storage -- Decoupling of Operational Store -- Automatic Data Synchronization -- SQL API and MongoDB API -- Analytical TTL -- Automatic Schema Updates -- Cost-Effective Archiving -- Scalability</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">When to Use Azure Synapse Link for Cosmos DB -- Azure Synapse Link Limitations -- Azure Synapse Link Use Cases -- Industrial IOT -- Predictive Maintenance Pipeline -- Operational Reporting -- Real-Time Applications -- Real-Time Personalization for E-Commerce Users -- How-To's -- How to Enable Azure Synapse Link for Azure Cosmos DB -- How to Create an Azure Cosmos DB Container with Analytical Store Using Azure Portal -- How to Connect to Azure Synapse Link for Azure Cosmos DB Using Azure Portal -- Summary -- Chapter 10: Azure Synapse Analytics Use Cases and Reference Architecture -- Where Should You Use Azure Synapse Analytics? -- Large Volume of Data -- Disparate Sources of Data -- Data Transformation -- Batch or Streaming Data -- Where Should You Not Use Azure Synapse Analytics? -- Use Cases for Azure Synapse Analytics -- Financial Services -- Manufacturing -- Retail -- Healthcare -- Reference Architectures for Azure Synapse Analytics -- Modern Data Warehouse Architecture -- Real-Time Analytics on Big Data Architecture -- Summary -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data warehousing-Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft Azure (Computing platform)</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Shiyal, Bhadresh</subfield><subfield code="t">Beginning Azure Synapse Analytics</subfield><subfield code="d">Berkeley, CA : Apress L. P.,c2021</subfield><subfield code="z">9781484270608</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033900033</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6648095</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV048523185
illustrated Not Illustrated
indexdate 2024-12-24T09:34:37Z
institution BVB
isbn 9781484270615
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033900033
oclc_num 1257400854
open_access_boolean
owner DE-2070s
owner_facet DE-2070s
physical 1 Online-Ressource (263 Seiten)
psigel ZDB-30-PQE
ZDB-30-PQE HWR_PDA_PQE_Kauf
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher Apress L. P.
record_format marc
spelling Shiyal, Bhadresh Verfasser aut
Beginning Azure Synapse Analytics Transition from Data Warehouse to Data Lakehouse
Berkeley, CA Apress L. P. 2021
©2021
1 Online-Ressource (263 Seiten)
txt rdacontent
c rdamedia
cr rdacarrier
Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Core Data and Analytics Concepts -- Core Data Concepts -- What Is Data? -- Structured Data -- Semi-structured Data -- Unstructured Data -- Data Processing Methods -- Batch Data Processing -- Streaming or Real-Time Data Processing -- Relational Data and Its Characteristics -- Non-Relational Data and Its Characteristics -- Core Data Analytics Concepts -- What Is Data Analytics? -- Data Ingestion -- Data Exploration -- Data Processing -- ETL -- ELT -- ELT / ETL Tools -- Data Visualization -- Data Analytics Categories -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Cognitive Analytics -- Summary -- Chapter 2: Modern Data Warehouses and Data Lakehouses -- What Is a Data Warehouse? -- Core Data Warehouse Concepts -- Data Model -- Model Types -- Schema Types -- Metadata -- Why Do We Need a Data Warehouse? -- Efficient Decision-Making -- Separation of Concerns -- Single Version of the Truth -- Data Restructuring -- Self-Service BI -- Historical Data -- Security -- Data Quality -- Data Mining -- More Revenues -- What Is a Modern Data Warehouse? -- Difference Between Traditional &amp -- Modern Data Warehouses -- Cloud vs. On-Premises -- Separation of Compute and Storage Resources -- Cost -- Scalability -- ETL vs. ELT -- Disaster Recovery -- Overall Architecture -- Data Lakehouse -- What Is a Data Lake? -- What Is Delta Lake? -- What Is Apache Spark? -- What Is a Data Lakehouse? -- Characteristics of a Data Lakehouse -- Various Data Types -- AI -- Decoupled Compute and Storage Resources -- Open Source Storage Format -- Data Analytics and BI Tools -- ACID Properties -- Differences Between a Data Warehouse and a Data Lakehouse -- Architecture -- Access to Raw Data
Open Source vs. Proprietary -- Workloads -- Query Engines -- Data Processing -- Real-Time Data -- Examples of Data Lakehouses -- Azure Synapse Analytics -- Databricks -- Benefits of Data Lakehouse -- Support for All Types of Data -- Time to Market -- More Cost Effective -- AI -- Reduction in ETL/ELT Jobs -- Usage of Open Source Tools and Technologies -- Efficient and Easy Data Governance -- Drawbacks of Data Lakehouse -- Monolithic Architecture -- Technical Infancy -- Migration Cost -- Lack of Many Products/Options -- Scarcity of Skilled Technical Resources -- Summary -- Chapter 3: Introduction to Azure Synapse Analytics -- What Is Azure Synapse Analytics? -- Azure Synapse Analytics vs. Azure SQL Data Warehouse -- Why Should You Learn Azure Synapse Analytics? -- Main Features of Azure Synapse Analytics -- Unified Data Analytics Experience -- Powerful Data Insights -- Unlimited Scale -- Security, Privacy, and Compliance -- HTAP -- Key Service Capabilities of Azure Synapse Analytics -- Data Lake Exploration -- Multiple Language Support -- Deeply Integrated Apache Spark -- Serverless Synapse SQL Pool -- Hybrid Data Integration -- Power BI Integration -- AI Integration -- Enterprise Data Warehousing -- Seamless Streaming Analytics -- Workload Management -- Advanced Security -- Summary -- Chapter 4: Architecture and Its Main Components -- High-Level Architecture -- Main Components of Architecture -- Synapse SQL -- Compute Layer -- Dedicated Synapse SQL Pool -- Serverless Synapse SQL Pool -- Storage Layer -- Synapse Spark or Apache Spark -- Synapse Pipelines -- Synapse Studio -- Synapse Link -- Summary -- Chapter 5: Synapse SQL -- Synapse SQL Architecture Components -- Massively Parallel Processing Engine -- Distributed Query Processing Engine -- Control Node -- Compute Nodes -- Data Movement Service -- Distribution -- Hash Distribution
Round-Robin Distribution -- Replication-based Distribution -- Azure Storage -- Dedicated or Provisioned Synapse SQL Pool -- Serverless or On-Demand Synapse SQL Pool -- Synapse SQL Feature Comparison -- Database Object Types -- Query Language -- Security -- Tools -- Storage Options -- Data Formats -- Resource Consumption Model for Synapse SQL -- Synapse SQL Best Practices -- Best Practices for Serverless Synapse SQL Pool -- Best Practices for Dedicated Synapse SQL Pool -- How-To's -- Create a Dedicated Synapse SQL Pool -- Create a Serverless or On-Demand Synapse SQL Pool -- Load Data Using COPY Statement in Dedicated Synapse SQL Pool -- Ingest Data into Azure Data Lake Storage Gen2 -- Summary -- Chapter 6: Synapse Spark -- What Is Apache Spark? -- What Is Synapse Spark in Azure Synapse Analytics? -- Synapse Spark Features &amp -- Capabilities -- Speed -- Faster Start Time -- Ease of Creation -- Ease of Use -- Security -- Automatic Scalability -- Separation of Concerns -- Multiple Language Support -- Integration with IDEs -- Pre-loaded Libraries -- REST APIs -- Delta Lake and Its Importance in Synapse Spark -- Synapse Spark Job Optimization -- Data Format -- Memory Management -- Data Serialization -- Data Caching -- Data Abstraction -- Join and Shuffle Optimization -- Bucketing -- Hyperspace Indexing -- Synapse Spark Machine Learning -- Data Preparation and Exploration -- Build Machine Learning Models -- Train Machine Learning Models -- Model Deployment and Scoring -- How-To's -- How to Create a Synapse Spark Pool -- How to Create and Submit Apache Spark Job Definition in Synapse Studio Using Python -- How to Monitor Synapse Spark Pools Using Synapse Studio -- Summary -- Chapter 7: Synapse Pipelines -- Overview of Azure Data Factory -- Overview of Synapse Pipelines -- Activities -- Pipelines -- Linked Services -- Dataset -- Integration Runtimes (IR)
Azure Integration Runtime (Azure IR) -- Self-Hosted Integration Runtimes (SHIR) -- Azure SSIS Integration Runtimes (Azure SSIS IR) -- Control Flow -- Parameters -- Data Flow -- Data Movement Activities -- Category: Azure -- Category: Database -- Category: NoSQL -- Category: File -- Category: Generic -- Category: Services and Applications -- Data Transformation Activities -- Control Flow Activities -- Copy Pipeline Example -- Transformation Pipeline Example -- Pipeline Triggers -- Summary -- Chapter 8: Synapse Workspace and Studio -- What Is a Synapse Analytics Workspace? -- Synapse Analytics Workspace Components and Features -- Azure Data Lake Storage Gen2 Account and File System -- Serverless Synapse SQL Pool -- Shared Metadata Management -- Code Artifacts -- What Is Synapse Studio? -- Main Features of Synapse Studio -- Home Hub -- Data Hub -- Develop Hub -- Integrate Hub -- Monitor Hub -- Integration -- Activities -- Manage Hub -- Analytics Pools -- External Connections -- Integration -- Security -- Synapse Studio Capabilities -- Data Preparation -- Data Management -- Data Exploration -- Data Warehousing -- Data Visualization -- Machine Learning -- Power BI in Synapse Studio -- How-To's -- How to Create or Provision a New Azure Synapse Analytics Workspace Using Azure Portal -- How to Launch Azure Synapse Studio -- How to Link Power BI with Azure Synapse Studio -- Summary -- Chapter 9: Synapse Link -- OLTP vs. OLAP -- What Is HTAP? -- Benefits of HTAP -- No-ETL Analytics -- Instant Insights -- Reduced Data Duplication -- Simplified Technical Architecture -- What Is Azure Synapse Link? -- Azure Cosmos DB -- Azure Cosmos DB Analytical Store -- Columnar Storage -- Decoupling of Operational Store -- Automatic Data Synchronization -- SQL API and MongoDB API -- Analytical TTL -- Automatic Schema Updates -- Cost-Effective Archiving -- Scalability
When to Use Azure Synapse Link for Cosmos DB -- Azure Synapse Link Limitations -- Azure Synapse Link Use Cases -- Industrial IOT -- Predictive Maintenance Pipeline -- Operational Reporting -- Real-Time Applications -- Real-Time Personalization for E-Commerce Users -- How-To's -- How to Enable Azure Synapse Link for Azure Cosmos DB -- How to Create an Azure Cosmos DB Container with Analytical Store Using Azure Portal -- How to Connect to Azure Synapse Link for Azure Cosmos DB Using Azure Portal -- Summary -- Chapter 10: Azure Synapse Analytics Use Cases and Reference Architecture -- Where Should You Use Azure Synapse Analytics? -- Large Volume of Data -- Disparate Sources of Data -- Data Transformation -- Batch or Streaming Data -- Where Should You Not Use Azure Synapse Analytics? -- Use Cases for Azure Synapse Analytics -- Financial Services -- Manufacturing -- Retail -- Healthcare -- Reference Architectures for Azure Synapse Analytics -- Modern Data Warehouse Architecture -- Real-Time Analytics on Big Data Architecture -- Summary -- Index
Data warehousing-Management
Microsoft Azure (Computing platform)
Electronic books
Erscheint auch als Druck-Ausgabe Shiyal, Bhadresh Beginning Azure Synapse Analytics Berkeley, CA : Apress L. P.,c2021 9781484270608
spellingShingle Shiyal, Bhadresh
Beginning Azure Synapse Analytics Transition from Data Warehouse to Data Lakehouse
Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Core Data and Analytics Concepts -- Core Data Concepts -- What Is Data? -- Structured Data -- Semi-structured Data -- Unstructured Data -- Data Processing Methods -- Batch Data Processing -- Streaming or Real-Time Data Processing -- Relational Data and Its Characteristics -- Non-Relational Data and Its Characteristics -- Core Data Analytics Concepts -- What Is Data Analytics? -- Data Ingestion -- Data Exploration -- Data Processing -- ETL -- ELT -- ELT / ETL Tools -- Data Visualization -- Data Analytics Categories -- Descriptive Analytics -- Diagnostic Analytics -- Predictive Analytics -- Prescriptive Analytics -- Cognitive Analytics -- Summary -- Chapter 2: Modern Data Warehouses and Data Lakehouses -- What Is a Data Warehouse? -- Core Data Warehouse Concepts -- Data Model -- Model Types -- Schema Types -- Metadata -- Why Do We Need a Data Warehouse? -- Efficient Decision-Making -- Separation of Concerns -- Single Version of the Truth -- Data Restructuring -- Self-Service BI -- Historical Data -- Security -- Data Quality -- Data Mining -- More Revenues -- What Is a Modern Data Warehouse? -- Difference Between Traditional &amp -- Modern Data Warehouses -- Cloud vs. On-Premises -- Separation of Compute and Storage Resources -- Cost -- Scalability -- ETL vs. ELT -- Disaster Recovery -- Overall Architecture -- Data Lakehouse -- What Is a Data Lake? -- What Is Delta Lake? -- What Is Apache Spark? -- What Is a Data Lakehouse? -- Characteristics of a Data Lakehouse -- Various Data Types -- AI -- Decoupled Compute and Storage Resources -- Open Source Storage Format -- Data Analytics and BI Tools -- ACID Properties -- Differences Between a Data Warehouse and a Data Lakehouse -- Architecture -- Access to Raw Data
Open Source vs. Proprietary -- Workloads -- Query Engines -- Data Processing -- Real-Time Data -- Examples of Data Lakehouses -- Azure Synapse Analytics -- Databricks -- Benefits of Data Lakehouse -- Support for All Types of Data -- Time to Market -- More Cost Effective -- AI -- Reduction in ETL/ELT Jobs -- Usage of Open Source Tools and Technologies -- Efficient and Easy Data Governance -- Drawbacks of Data Lakehouse -- Monolithic Architecture -- Technical Infancy -- Migration Cost -- Lack of Many Products/Options -- Scarcity of Skilled Technical Resources -- Summary -- Chapter 3: Introduction to Azure Synapse Analytics -- What Is Azure Synapse Analytics? -- Azure Synapse Analytics vs. Azure SQL Data Warehouse -- Why Should You Learn Azure Synapse Analytics? -- Main Features of Azure Synapse Analytics -- Unified Data Analytics Experience -- Powerful Data Insights -- Unlimited Scale -- Security, Privacy, and Compliance -- HTAP -- Key Service Capabilities of Azure Synapse Analytics -- Data Lake Exploration -- Multiple Language Support -- Deeply Integrated Apache Spark -- Serverless Synapse SQL Pool -- Hybrid Data Integration -- Power BI Integration -- AI Integration -- Enterprise Data Warehousing -- Seamless Streaming Analytics -- Workload Management -- Advanced Security -- Summary -- Chapter 4: Architecture and Its Main Components -- High-Level Architecture -- Main Components of Architecture -- Synapse SQL -- Compute Layer -- Dedicated Synapse SQL Pool -- Serverless Synapse SQL Pool -- Storage Layer -- Synapse Spark or Apache Spark -- Synapse Pipelines -- Synapse Studio -- Synapse Link -- Summary -- Chapter 5: Synapse SQL -- Synapse SQL Architecture Components -- Massively Parallel Processing Engine -- Distributed Query Processing Engine -- Control Node -- Compute Nodes -- Data Movement Service -- Distribution -- Hash Distribution
Round-Robin Distribution -- Replication-based Distribution -- Azure Storage -- Dedicated or Provisioned Synapse SQL Pool -- Serverless or On-Demand Synapse SQL Pool -- Synapse SQL Feature Comparison -- Database Object Types -- Query Language -- Security -- Tools -- Storage Options -- Data Formats -- Resource Consumption Model for Synapse SQL -- Synapse SQL Best Practices -- Best Practices for Serverless Synapse SQL Pool -- Best Practices for Dedicated Synapse SQL Pool -- How-To's -- Create a Dedicated Synapse SQL Pool -- Create a Serverless or On-Demand Synapse SQL Pool -- Load Data Using COPY Statement in Dedicated Synapse SQL Pool -- Ingest Data into Azure Data Lake Storage Gen2 -- Summary -- Chapter 6: Synapse Spark -- What Is Apache Spark? -- What Is Synapse Spark in Azure Synapse Analytics? -- Synapse Spark Features &amp -- Capabilities -- Speed -- Faster Start Time -- Ease of Creation -- Ease of Use -- Security -- Automatic Scalability -- Separation of Concerns -- Multiple Language Support -- Integration with IDEs -- Pre-loaded Libraries -- REST APIs -- Delta Lake and Its Importance in Synapse Spark -- Synapse Spark Job Optimization -- Data Format -- Memory Management -- Data Serialization -- Data Caching -- Data Abstraction -- Join and Shuffle Optimization -- Bucketing -- Hyperspace Indexing -- Synapse Spark Machine Learning -- Data Preparation and Exploration -- Build Machine Learning Models -- Train Machine Learning Models -- Model Deployment and Scoring -- How-To's -- How to Create a Synapse Spark Pool -- How to Create and Submit Apache Spark Job Definition in Synapse Studio Using Python -- How to Monitor Synapse Spark Pools Using Synapse Studio -- Summary -- Chapter 7: Synapse Pipelines -- Overview of Azure Data Factory -- Overview of Synapse Pipelines -- Activities -- Pipelines -- Linked Services -- Dataset -- Integration Runtimes (IR)
Azure Integration Runtime (Azure IR) -- Self-Hosted Integration Runtimes (SHIR) -- Azure SSIS Integration Runtimes (Azure SSIS IR) -- Control Flow -- Parameters -- Data Flow -- Data Movement Activities -- Category: Azure -- Category: Database -- Category: NoSQL -- Category: File -- Category: Generic -- Category: Services and Applications -- Data Transformation Activities -- Control Flow Activities -- Copy Pipeline Example -- Transformation Pipeline Example -- Pipeline Triggers -- Summary -- Chapter 8: Synapse Workspace and Studio -- What Is a Synapse Analytics Workspace? -- Synapse Analytics Workspace Components and Features -- Azure Data Lake Storage Gen2 Account and File System -- Serverless Synapse SQL Pool -- Shared Metadata Management -- Code Artifacts -- What Is Synapse Studio? -- Main Features of Synapse Studio -- Home Hub -- Data Hub -- Develop Hub -- Integrate Hub -- Monitor Hub -- Integration -- Activities -- Manage Hub -- Analytics Pools -- External Connections -- Integration -- Security -- Synapse Studio Capabilities -- Data Preparation -- Data Management -- Data Exploration -- Data Warehousing -- Data Visualization -- Machine Learning -- Power BI in Synapse Studio -- How-To's -- How to Create or Provision a New Azure Synapse Analytics Workspace Using Azure Portal -- How to Launch Azure Synapse Studio -- How to Link Power BI with Azure Synapse Studio -- Summary -- Chapter 9: Synapse Link -- OLTP vs. OLAP -- What Is HTAP? -- Benefits of HTAP -- No-ETL Analytics -- Instant Insights -- Reduced Data Duplication -- Simplified Technical Architecture -- What Is Azure Synapse Link? -- Azure Cosmos DB -- Azure Cosmos DB Analytical Store -- Columnar Storage -- Decoupling of Operational Store -- Automatic Data Synchronization -- SQL API and MongoDB API -- Analytical TTL -- Automatic Schema Updates -- Cost-Effective Archiving -- Scalability
When to Use Azure Synapse Link for Cosmos DB -- Azure Synapse Link Limitations -- Azure Synapse Link Use Cases -- Industrial IOT -- Predictive Maintenance Pipeline -- Operational Reporting -- Real-Time Applications -- Real-Time Personalization for E-Commerce Users -- How-To's -- How to Enable Azure Synapse Link for Azure Cosmos DB -- How to Create an Azure Cosmos DB Container with Analytical Store Using Azure Portal -- How to Connect to Azure Synapse Link for Azure Cosmos DB Using Azure Portal -- Summary -- Chapter 10: Azure Synapse Analytics Use Cases and Reference Architecture -- Where Should You Use Azure Synapse Analytics? -- Large Volume of Data -- Disparate Sources of Data -- Data Transformation -- Batch or Streaming Data -- Where Should You Not Use Azure Synapse Analytics? -- Use Cases for Azure Synapse Analytics -- Financial Services -- Manufacturing -- Retail -- Healthcare -- Reference Architectures for Azure Synapse Analytics -- Modern Data Warehouse Architecture -- Real-Time Analytics on Big Data Architecture -- Summary -- Index
Data warehousing-Management
Microsoft Azure (Computing platform)
title Beginning Azure Synapse Analytics Transition from Data Warehouse to Data Lakehouse
title_auth Beginning Azure Synapse Analytics Transition from Data Warehouse to Data Lakehouse
title_exact_search Beginning Azure Synapse Analytics Transition from Data Warehouse to Data Lakehouse
title_full Beginning Azure Synapse Analytics Transition from Data Warehouse to Data Lakehouse
title_fullStr Beginning Azure Synapse Analytics Transition from Data Warehouse to Data Lakehouse
title_full_unstemmed Beginning Azure Synapse Analytics Transition from Data Warehouse to Data Lakehouse
title_short Beginning Azure Synapse Analytics
title_sort beginning azure synapse analytics transition from data warehouse to data lakehouse
title_sub Transition from Data Warehouse to Data Lakehouse
topic Data warehousing-Management
Microsoft Azure (Computing platform)
topic_facet Data warehousing-Management
Microsoft Azure (Computing platform)
work_keys_str_mv AT shiyalbhadresh beginningazuresynapseanalyticstransitionfromdatawarehousetodatalakehouse