Wave packet analysis of Feynman path integrals

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nicola, Fabio (VerfasserIn), Trapasso, S. Ivan (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cham, Switzerland Springer [2022]
Schriftenreihe:Lecture notes in mathematics Volume 2305
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV048447164
003 DE-604
005 20220905
007 t
008 220830s2022 |||| |||| 00||| eng d
020 |a 9783031061851  |9 978-3-031-06185-1 
035 |a (OCoLC)1341225251 
035 |a (DE-599)KXP1814422838 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-188  |a DE-83  |a DE-824 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a 81S30  |2 msc 
084 |a 81S40  |2 msc 
084 |a 42B10  |2 msc 
084 |a 43T12  |2 msc 
084 |a 42B35  |2 msc 
084 |a 81Q30  |2 msc 
100 1 |a Nicola, Fabio  |0 (DE-588)1183842643  |4 aut 
245 1 0 |a Wave packet analysis of Feynman path integrals  |c Fabio Nicola, S. Ivan Trapasso 
264 1 |a Cham, Switzerland  |b Springer  |c [2022] 
264 4 |c © 2022 
300 |a xiii, 211 Seiten  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v Volume 2305 
700 1 |a Trapasso, S. Ivan  |0 (DE-588)1265532559  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-0310-6186-8  |w (DE-604)BV048384388 
830 0 |a Lecture notes in mathematics  |v Volume 2305  |w (DE-604)BV000676446  |9 2305 
856 4 2 |m HEBIS Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033825383&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-033825383 

Datensatz im Suchindex

_version_ 1804184376471191552
adam_text Contents Itinerary: How Gabor Analysis Met Feynman Path Integrals 1 1 The Elements of Gabor Analysts ccccccseaeeceeeeeaeereees 111 The Analysis of Functions via Gabor Wave Packets 1 2 The Analysis of Operators via Gabor Wave Packets 0 0005 121 The Problem of Quantization cccceseeeeeeeeeeeeees 122 Metaplectic Operators 00c cece cence eneeeeneneenenes 1 3 The Problem of Feynman Path Integrals 0:ccceaeeeeeeeens 131 Rigorous Time-Slicing Approximation of Feynman Path Integrals 00 ccceeeseesc cnet seen eeeeeesenereeenenees 132 Pointwise Convergence at the Level of Integral Kernels for Feynman-Trotter Parametrices : :0e000- 133 Convergence of Time-Slicing Approximations in L(L?) for Low-Regular Potentials 00 ssecsseeeseueee 134 Convergence of Time-Slicing Approximations in the | Ye PartI Elements of Gabor Analysis Basic Facts of Classical Analysis 0 0:scceeeeeeneeee rer eeennes 2 1 General Notation c cece cece cence ee tee teen eae teen eae eeaees 2 2 Function Spaces ccc cece e sees net e eee nae n eee eae eeeeneaseenees 221 Lebesgue Spaces cccce cece cece etn eeeeerensereenens 222 Differentiable Functions and Distributions 2 3 Basic Operations on Functions and Distributions 600065 2 4 The Fourier Transform 2uesesereenanennesn rer nennen sn e rennen 241 Convolution and Fourier Multipliers 2r0s seen 2 5 Some More Facıs and Notations surssneenersneennnnnnen nen The Gabor Analysis of Functions - s-44sr4s20se sen en enn en nenn 3 1 Time-Frequency Representations :0eeeee cece eeeeneeetenees 311 The Short-Time Fourier Transform scceeseeseveeeee 312 Quadratic RepresentationS cccsseeeeeeseeeseeeeenn eee 3 2 Modulation Spaces cccssseereeeet reece net eseeees cere sees teres 3,3 Wiener Amalgam Spaces uesrmenseenensenenertenenessesenenn 34A Banach-Gelfand Triple of Modulation Spaces nennen 3 5 The Sjöstrand Class and Related Spaces cccceceeeeseneees 3 6 Complements een nennen 361 Weight Functions ue eenennenenenenennnenennnnteenen 362 The Cohen Class of Time-Frequency Representations 363 Kato-Sobolev Spaces +seseersereeeee nee renea rere eeees 364 Fourier Multipliers cecseseeseee sees esses eens ee eenes 365 More on the Sjdstrand Class : -s esses eee eee eens 366 Boundedness of Time-Frequency Transforms on Modulation SpaceS +ecesee eee ee rene ee teense een eeeees 367 Gabor Frames ceee eee ee enero nent tae ne eens eae enens 4 The Gabor Analysis of Operators :ssccere reese cette eeeeeeees 4 1 The General Program scecse erect ee ee ere t nee ene ne neta ens 4 2 The Weyl Quantization cecereeee ee ee eter eee ne reenter ence es 4 3 Metaplectic Operators 000 0: cseeeeee ee eens nee ne tees eters teeta res 431 Notable Facts on Symplectic Matrices ceseeeeee eee 432 Metaplectic Operators: Definitions and Basic Properties 433 The Schrédinger Equation with Quadratic Hamiltonian 434 Symplectic Covariance of the Weyl Calculus 435 Gabor Matrix of Metaplectic Operators 4 4 Fourier and Oscillatory Integral Operators 442 Generalized Metaplectic Operators 4 5 Complements 451 Weyl Operators and Narrow Convergence 452 General Quantization Rules 453 The Class F10’(S, vs) 454 Finer Aspects of Gabor Wave Packet Analysis 5 Semiclassical Gabor Analysis 5 1 Semiclassical Transforms and Function Spaces 511 Sobolev Spaces and Embeddings 5 2 Semiclassical Quantization, Metaplectic Operators and FIOs Part II Analysis of Feynman Path Integrals 6 Pointwise Convergence of the Integral Kernels 6 1 Summary 621 The Schwartz Kernel Theorem 622 Uniform Estimates for Linear 441 Canonical Transformations and the Associated Operators 443 Oscillatory Integral Operators with Rough Amplitude Contents Contents xi 623 Exponentiation in Banach Algebras cceeceeeeeeeee 124 624 Two Technical Lemmas ccscceeseeesee eer enereencenees 125 6 3 Reduction to the Case A = (27 )T! ecco ccc ecccsccueceeeecaeeeeeens 126 6 4 The Fundamental Solution and the Trotter Formula - 127 6 5 Potentials in MGS neeeenseneeennnaneenenennenernennenennrennennnnnernen 132 6 6 Potentials in CE? cece c cee nee cece eee eeneeneneneeeneneereeea tenes 135 6 7 Potentials in the Sjéstrand Class M°! oo cccsccceeceeeeeneeeneees 136 6 8 Convergence at Exceptional Times e:cccsceeceeeeeeeeeeees 140 6 9 Physics at Exceptional Times 0 cccceeeeeeeeeneeeeeesenenes 143 7 Convergence in L(L?) for Potentials in the Sjéstrand Class 145 7 1 SUMMATY «0 cece eter e cree nee n rete nee nan eaeenanteee renee 145 7 2 An Abstract Approximation Result in £L(L?) u 148 7 3 Short-Time Analysis of the Action uessssssneearennenenernere 150 74 Estimates for the Parametrix and Convergence Results 154 8 Convergence in £(L7) for Potentials in Kato-Sobolev Spaces 161 8 1 Summary eeenenennsensensenensenensenesnenenneneenenesnnenesnenensen 161 8 2 Sobolev Regularity of the Hamiltonian Flow :escceseeees 163 8 3 Sobolev Regularity of the Classical Action serseerenenenee 172 8 4 Analysis of the Parametrices and Convergence Results - 174 8 5 Higher-Order Parametrices ccccccsaseeeeeneeee reese neeenees 178 9 Convergence in the L? Setting ccccccccc cence eee en ene eneenenes 183 QL SUMMATY 0 eee te eect ence nee ene nen e eens eet ener ee eee neta eee 183 9 2 Review of the Short Time Analysis in the Smooth Category 185 9 3 Wave Packet Analysis of the Schrödinger Flow -u -- 187 9 4 Convergence in L? with Loss of Derivatives :sssesesereeres 190 9 5 The Case of Magnetic Fields 1000 cece ec eeecee ee eneeeeseeeer erie 192 9 6 Sharpness of the Results c:cceceseneeeeeeeeeteeentenet arenes 195 9 7 Extensions to the Case of Rough Potentials - 0- seseeeee ees 197 Bibliography 0ccecc eee e cece eee eee een e eee en cree enone eran en eneaees 199 Unde x oo c cece cece eee e nee eee ene ee EEE SEE REED EEE EEE E EEE en Ee EER ES 209
adam_txt Contents Itinerary: How Gabor Analysis Met Feynman Path Integrals 1 1 The Elements of Gabor Analysts ccccccseaeeceeeeeaeereees 111 The Analysis of Functions via Gabor Wave Packets 1 2 The Analysis of Operators via Gabor Wave Packets 0 0005 121 The Problem of Quantization cccceseeeeeeeeeeeeees 122 Metaplectic Operators 00c cece cence eneeeeneneenenes 1 3 The Problem of Feynman Path Integrals 0:ccceaeeeeeeeens 131 Rigorous Time-Slicing Approximation of Feynman Path Integrals 00 ccceeeseesc cnet seen eeeeeesenereeenenees 132 Pointwise Convergence at the Level of Integral Kernels for Feynman-Trotter Parametrices : :0e000- 133 Convergence of Time-Slicing Approximations in L(L?) for Low-Regular Potentials 00 ssecsseeeseueee 134 Convergence of Time-Slicing Approximations in the | Ye PartI Elements of Gabor Analysis Basic Facts of Classical Analysis 0 0:scceeeeeeneeee rer eeennes 2 1 General Notation c cece cece cence ee tee teen eae teen eae eeaees 2 2 Function Spaces ccc cece e sees net e eee nae n eee eae eeeeneaseenees 221 Lebesgue Spaces cccce cece cece etn eeeeerensereenens 222 Differentiable Functions and Distributions 2 3 Basic Operations on Functions and Distributions 600065 2 4 The Fourier Transform 2uesesereenanennesn rer nennen sn e rennen 241 Convolution and Fourier Multipliers 2r0s seen 2 5 Some More Facıs and Notations surssneenersneennnnnnen nen The Gabor Analysis of Functions - s-44sr4s20se sen en enn en nenn 3 1 Time-Frequency Representations :0eeeee cece eeeeneeetenees 311 The Short-Time Fourier Transform scceeseeseveeeee 312 Quadratic RepresentationS cccsseeeeeeseeeseeeeenn eee 3 2 Modulation Spaces cccssseereeeet reece net eseeees cere sees teres 3,3 Wiener Amalgam Spaces uesrmenseenensenenertenenessesenenn 34A Banach-Gelfand Triple of Modulation Spaces nennen 3 5 The Sjöstrand Class and Related Spaces cccceceeeeseneees 3 6 Complements een nennen 361 Weight Functions ue eenennenenenenennnenennnnteenen 362 The Cohen Class of Time-Frequency Representations 363 Kato-Sobolev Spaces +seseersereeeee nee renea rere eeees 364 Fourier Multipliers cecseseeseee sees esses eens ee eenes 365 More on the Sjdstrand Class : -s esses eee eee eens 366 Boundedness of Time-Frequency Transforms on Modulation SpaceS +ecesee eee ee rene ee teense een eeeees 367 Gabor Frames ceee eee ee enero nent tae ne eens eae enens 4 The Gabor Analysis of Operators :ssccere reese cette eeeeeeees 4 1 The General Program scecse erect ee ee ere t nee ene ne neta ens 4 2 The Weyl Quantization cecereeee ee ee eter eee ne reenter ence es 4 3 Metaplectic Operators 000 0: cseeeeee ee eens nee ne tees eters teeta res 431 Notable Facts on Symplectic Matrices ceseeeeee eee 432 Metaplectic Operators: Definitions and Basic Properties 433 The Schrédinger Equation with Quadratic Hamiltonian 434 Symplectic Covariance of the Weyl Calculus 435 Gabor Matrix of Metaplectic Operators 4 4 Fourier and Oscillatory Integral Operators 442 Generalized Metaplectic Operators 4 5 Complements 451 Weyl Operators and Narrow Convergence 452 General Quantization Rules 453 The Class F10’(S, vs) 454 Finer Aspects of Gabor Wave Packet Analysis 5 Semiclassical Gabor Analysis 5 1 Semiclassical Transforms and Function Spaces 511 Sobolev Spaces and Embeddings 5 2 Semiclassical Quantization, Metaplectic Operators and FIOs Part II Analysis of Feynman Path Integrals 6 Pointwise Convergence of the Integral Kernels 6 1 Summary 621 The Schwartz Kernel Theorem 622 Uniform Estimates for Linear 441 Canonical Transformations and the Associated Operators 443 Oscillatory Integral Operators with Rough Amplitude Contents Contents xi 623 Exponentiation in Banach Algebras cceeceeeeeeeee 124 624 Two Technical Lemmas ccscceeseeesee eer enereencenees 125 6 3 Reduction to the Case A = (27 )T! ecco ccc ecccsccueceeeecaeeeeeens 126 6 4 The Fundamental Solution and the Trotter Formula - 127 6 5 Potentials in MGS neeeenseneeennnaneenenennenernennenennrennennnnnernen 132 6 6 Potentials in CE? cece c cee nee cece eee eeneeneneneeeneneereeea tenes 135 6 7 Potentials in the Sjéstrand Class M°! oo cccsccceeceeeeeneeeneees 136 6 8 Convergence at Exceptional Times e:cccsceeceeeeeeeeeeees 140 6 9 Physics at Exceptional Times 0 cccceeeeeeeeeneeeeeesenenes 143 7 Convergence in L(L?) for Potentials in the Sjéstrand Class 145 7 1 SUMMATY «0 cece eter e cree nee n rete nee nan eaeenanteee renee 145 7 2 An Abstract Approximation Result in £L(L?) u 148 7 3 Short-Time Analysis of the Action uessssssneearennenenernere 150 74 Estimates for the Parametrix and Convergence Results 154 8 Convergence in £(L7) for Potentials in Kato-Sobolev Spaces 161 8 1 Summary eeenenennsensensenensenensenesnenenneneenenesnnenesnenensen 161 8 2 Sobolev Regularity of the Hamiltonian Flow :escceseeees 163 8 3 Sobolev Regularity of the Classical Action serseerenenenee 172 8 4 Analysis of the Parametrices and Convergence Results - 174 8 5 Higher-Order Parametrices ccccccsaseeeeeneeee reese neeenees 178 9 Convergence in the L? Setting ccccccccc cence eee en ene eneenenes 183 QL SUMMATY 0 eee te eect ence nee ene nen e eens eet ener ee eee neta eee 183 9 2 Review of the Short Time Analysis in the Smooth Category 185 9 3 Wave Packet Analysis of the Schrödinger Flow -u -- 187 9 4 Convergence in L? with Loss of Derivatives :sssesesereeres 190 9 5 The Case of Magnetic Fields 1000 cece ec eeecee ee eneeeeseeeer erie 192 9 6 Sharpness of the Results c:cceceseneeeeeeeeeteeentenet arenes 195 9 7 Extensions to the Case of Rough Potentials - 0- seseeeee ees 197 Bibliography 0ccecc eee e cece eee eee een e eee en cree enone eran en eneaees 199 Unde x oo c cece cece eee e nee eee ene ee EEE SEE REED EEE EEE E EEE en Ee EER ES 209
any_adam_object 1
any_adam_object_boolean 1
author Nicola, Fabio
Trapasso, S. Ivan
author_GND (DE-588)1183842643
(DE-588)1265532559
author_facet Nicola, Fabio
Trapasso, S. Ivan
author_role aut
aut
author_sort Nicola, Fabio
author_variant f n fn
s i t si sit
building Verbundindex
bvnumber BV048447164
classification_rvk SI 850
ctrlnum (OCoLC)1341225251
(DE-599)KXP1814422838
discipline Mathematik
discipline_str_mv Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01538nam a2200409 cb4500</leader><controlfield tag="001">BV048447164</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220905 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220830s2022 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031061851</subfield><subfield code="9">978-3-031-06185-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1341225251</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1814422838</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">81S30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">81S40</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42B10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43T12</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42B35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">81Q30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nicola, Fabio</subfield><subfield code="0">(DE-588)1183842643</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wave packet analysis of Feynman path integrals</subfield><subfield code="c">Fabio Nicola, S. Ivan Trapasso</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 211 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">Volume 2305</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trapasso, S. Ivan</subfield><subfield code="0">(DE-588)1265532559</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-0310-6186-8</subfield><subfield code="w">(DE-604)BV048384388</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">Volume 2305</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">2305</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=033825383&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033825383</subfield></datafield></record></collection>
id DE-604.BV048447164
illustrated Not Illustrated
index_date 2024-07-03T20:29:35Z
indexdate 2024-07-10T09:38:21Z
institution BVB
isbn 9783031061851
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033825383
oclc_num 1341225251
open_access_boolean
owner DE-188
DE-83
DE-824
owner_facet DE-188
DE-83
DE-824
physical xiii, 211 Seiten Diagramme
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spelling Nicola, Fabio (DE-588)1183842643 aut
Wave packet analysis of Feynman path integrals Fabio Nicola, S. Ivan Trapasso
Cham, Switzerland Springer [2022]
© 2022
xiii, 211 Seiten Diagramme
txt rdacontent
n rdamedia
nc rdacarrier
Lecture notes in mathematics Volume 2305
Trapasso, S. Ivan (DE-588)1265532559 aut
Erscheint auch als Online-Ausgabe 978-3-0310-6186-8 (DE-604)BV048384388
Lecture notes in mathematics Volume 2305 (DE-604)BV000676446 2305
HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033825383&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Nicola, Fabio
Trapasso, S. Ivan
Wave packet analysis of Feynman path integrals
Lecture notes in mathematics
title Wave packet analysis of Feynman path integrals
title_auth Wave packet analysis of Feynman path integrals
title_exact_search Wave packet analysis of Feynman path integrals
title_exact_search_txtP Wave packet analysis of Feynman path integrals
title_full Wave packet analysis of Feynman path integrals Fabio Nicola, S. Ivan Trapasso
title_fullStr Wave packet analysis of Feynman path integrals Fabio Nicola, S. Ivan Trapasso
title_full_unstemmed Wave packet analysis of Feynman path integrals Fabio Nicola, S. Ivan Trapasso
title_short Wave packet analysis of Feynman path integrals
title_sort wave packet analysis of feynman path integrals
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033825383&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000676446
work_keys_str_mv AT nicolafabio wavepacketanalysisoffeynmanpathintegrals
AT trapassosivan wavepacketanalysisoffeynmanpathintegrals