Algebraic number theory for beginners following a path from Euclid to Noether

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Stillwell, John 1942- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore Cambridge University Press 2022
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV048400109
003 DE-604
005 20230419
007 t
008 220810s2022 a||| |||| 00||| eng d
020 |a 9781009001922  |c paperback  |9 978-1-009-00192-2 
020 |a 9781316518953  |c hardback  |9 978-1-316-51895-3 
024 3 |a 9781009001922 
035 |a (ELiSA)ELiSA-9781009001922 
035 |a (OCoLC)1344236939 
035 |a (DE-599)BVBBV048400109 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-706  |a DE-188  |a DE-83  |a DE-11  |a DE-91G  |a DE-20 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
084 |a MAT 120  |2 stub 
084 |a 11Rxx  |2 msc 
084 |a 11Sxx  |2 msc 
100 1 |a Stillwell, John  |d 1942-  |e Verfasser  |0 (DE-588)128427264  |4 aut 
245 1 0 |a Algebraic number theory for beginners  |b following a path from Euclid to Noether  |c John Stillwell (University of San Francisco) 
264 1 |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore  |b Cambridge University Press  |c 2022 
264 4 |c © 2022 
300 |a xiv, 227 Seiten  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
505 8 |a Preface; 1. Euclidean arithmetic; 2. Diophantine arithmetic; 3. Quadratic forms; 4. Rings and fields; 5. Ideals; 6. Vector spaces; 7. Determinant theory; 8. Modules; 9. Ideals and prime factorization; References; Index. 
650 0 7 |a Algebraische Zahlentheorie  |0 (DE-588)4001170-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Algebraische Zahlentheorie  |0 (DE-588)4001170-7  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-009-00413-8 
999 |a oai:aleph.bib-bvb.de:BVB01-033778688 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/ MAT 120 2023 A 1632
DE-BY-TUM_katkey 2713598
DE-BY-TUM_media_number 040009550034
_version_ 1816714891537416192
adam_txt
any_adam_object
any_adam_object_boolean
author Stillwell, John 1942-
author_GND (DE-588)128427264
author_facet Stillwell, John 1942-
author_role aut
author_sort Stillwell, John 1942-
author_variant j s js
building Verbundindex
bvnumber BV048400109
classification_rvk SK 180
classification_tum MAT 120
contents Preface; 1. Euclidean arithmetic; 2. Diophantine arithmetic; 3. Quadratic forms; 4. Rings and fields; 5. Ideals; 6. Vector spaces; 7. Determinant theory; 8. Modules; 9. Ideals and prime factorization; References; Index.
ctrlnum (ELiSA)ELiSA-9781009001922
(OCoLC)1344236939
(DE-599)BVBBV048400109
discipline Mathematik
discipline_str_mv Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01734nam a2200409 c 4500</leader><controlfield tag="001">BV048400109</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230419 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220810s2022 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009001922</subfield><subfield code="c">paperback</subfield><subfield code="9">978-1-009-00192-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316518953</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-316-51895-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781009001922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELiSA)ELiSA-9781009001922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1344236939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048400109</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 120</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11Rxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11Sxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stillwell, John</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128427264</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic number theory for beginners</subfield><subfield code="b">following a path from Euclid to Noether</subfield><subfield code="c">John Stillwell (University of San Francisco)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 227 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface; 1. Euclidean arithmetic; 2. Diophantine arithmetic; 3. Quadratic forms; 4. Rings and fields; 5. Ideals; 6. Vector spaces; 7. Determinant theory; 8. Modules; 9. Ideals and prime factorization; References; Index.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-009-00413-8</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033778688</subfield></datafield></record></collection>
id DE-604.BV048400109
illustrated Illustrated
index_date 2024-07-03T20:22:44Z
indexdate 2024-11-25T18:02:39Z
institution BVB
isbn 9781009001922
9781316518953
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033778688
oclc_num 1344236939
open_access_boolean
owner DE-706
DE-188
DE-83
DE-11
DE-91G
DE-BY-TUM
DE-20
owner_facet DE-706
DE-188
DE-83
DE-11
DE-91G
DE-BY-TUM
DE-20
physical xiv, 227 Seiten Illustrationen
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher Cambridge University Press
record_format marc
spellingShingle Stillwell, John 1942-
Algebraic number theory for beginners following a path from Euclid to Noether
Preface; 1. Euclidean arithmetic; 2. Diophantine arithmetic; 3. Quadratic forms; 4. Rings and fields; 5. Ideals; 6. Vector spaces; 7. Determinant theory; 8. Modules; 9. Ideals and prime factorization; References; Index.
Algebraische Zahlentheorie (DE-588)4001170-7 gnd
subject_GND (DE-588)4001170-7
title Algebraic number theory for beginners following a path from Euclid to Noether
title_auth Algebraic number theory for beginners following a path from Euclid to Noether
title_exact_search Algebraic number theory for beginners following a path from Euclid to Noether
title_exact_search_txtP Algebraic number theory for beginners following a path from Euclid to Noether
title_full Algebraic number theory for beginners following a path from Euclid to Noether John Stillwell (University of San Francisco)
title_fullStr Algebraic number theory for beginners following a path from Euclid to Noether John Stillwell (University of San Francisco)
title_full_unstemmed Algebraic number theory for beginners following a path from Euclid to Noether John Stillwell (University of San Francisco)
title_short Algebraic number theory for beginners
title_sort algebraic number theory for beginners following a path from euclid to noether
title_sub following a path from Euclid to Noether
topic Algebraische Zahlentheorie (DE-588)4001170-7 gnd
topic_facet Algebraische Zahlentheorie
work_keys_str_mv AT stillwelljohn algebraicnumbertheoryforbeginnersfollowingapathfromeuclidtonoether