Algebraic number theory for beginners following a path from Euclid to Noether
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2022
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048400109 | ||
003 | DE-604 | ||
005 | 20230419 | ||
007 | t | ||
008 | 220810s2022 a||| |||| 00||| eng d | ||
020 | |a 9781009001922 |c paperback |9 978-1-009-00192-2 | ||
020 | |a 9781316518953 |c hardback |9 978-1-316-51895-3 | ||
024 | 3 | |a 9781009001922 | |
035 | |a (ELiSA)ELiSA-9781009001922 | ||
035 | |a (OCoLC)1344236939 | ||
035 | |a (DE-599)BVBBV048400109 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-188 |a DE-83 |a DE-11 |a DE-91G |a DE-20 | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a MAT 120 |2 stub | ||
084 | |a 11Rxx |2 msc | ||
084 | |a 11Sxx |2 msc | ||
100 | 1 | |a Stillwell, John |d 1942- |e Verfasser |0 (DE-588)128427264 |4 aut | |
245 | 1 | 0 | |a Algebraic number theory for beginners |b following a path from Euclid to Noether |c John Stillwell (University of San Francisco) |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a xiv, 227 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a Preface; 1. Euclidean arithmetic; 2. Diophantine arithmetic; 3. Quadratic forms; 4. Rings and fields; 5. Ideals; 6. Vector spaces; 7. Determinant theory; 8. Modules; 9. Ideals and prime factorization; References; Index. | |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-009-00413-8 |
999 | |a oai:aleph.bib-bvb.de:BVB01-033778688 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0102/ MAT 120 2023 A 1632 |
---|---|
DE-BY-TUM_katkey | 2713598 |
DE-BY-TUM_media_number | 040009550034 |
_version_ | 1816714891537416192 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Stillwell, John 1942- |
author_GND | (DE-588)128427264 |
author_facet | Stillwell, John 1942- |
author_role | aut |
author_sort | Stillwell, John 1942- |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV048400109 |
classification_rvk | SK 180 |
classification_tum | MAT 120 |
contents | Preface; 1. Euclidean arithmetic; 2. Diophantine arithmetic; 3. Quadratic forms; 4. Rings and fields; 5. Ideals; 6. Vector spaces; 7. Determinant theory; 8. Modules; 9. Ideals and prime factorization; References; Index. |
ctrlnum | (ELiSA)ELiSA-9781009001922 (OCoLC)1344236939 (DE-599)BVBBV048400109 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01734nam a2200409 c 4500</leader><controlfield tag="001">BV048400109</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230419 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220810s2022 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009001922</subfield><subfield code="c">paperback</subfield><subfield code="9">978-1-009-00192-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316518953</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-316-51895-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781009001922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELiSA)ELiSA-9781009001922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1344236939</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048400109</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 120</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11Rxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11Sxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stillwell, John</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128427264</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic number theory for beginners</subfield><subfield code="b">following a path from Euclid to Noether</subfield><subfield code="c">John Stillwell (University of San Francisco)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 227 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface; 1. Euclidean arithmetic; 2. Diophantine arithmetic; 3. Quadratic forms; 4. Rings and fields; 5. Ideals; 6. Vector spaces; 7. Determinant theory; 8. Modules; 9. Ideals and prime factorization; References; Index.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-009-00413-8</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033778688</subfield></datafield></record></collection> |
id | DE-604.BV048400109 |
illustrated | Illustrated |
index_date | 2024-07-03T20:22:44Z |
indexdate | 2024-11-25T18:02:39Z |
institution | BVB |
isbn | 9781009001922 9781316518953 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033778688 |
oclc_num | 1344236939 |
open_access_boolean | |
owner | DE-706 DE-188 DE-83 DE-11 DE-91G DE-BY-TUM DE-20 |
owner_facet | DE-706 DE-188 DE-83 DE-11 DE-91G DE-BY-TUM DE-20 |
physical | xiv, 227 Seiten Illustrationen |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spellingShingle | Stillwell, John 1942- Algebraic number theory for beginners following a path from Euclid to Noether Preface; 1. Euclidean arithmetic; 2. Diophantine arithmetic; 3. Quadratic forms; 4. Rings and fields; 5. Ideals; 6. Vector spaces; 7. Determinant theory; 8. Modules; 9. Ideals and prime factorization; References; Index. Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
subject_GND | (DE-588)4001170-7 |
title | Algebraic number theory for beginners following a path from Euclid to Noether |
title_auth | Algebraic number theory for beginners following a path from Euclid to Noether |
title_exact_search | Algebraic number theory for beginners following a path from Euclid to Noether |
title_exact_search_txtP | Algebraic number theory for beginners following a path from Euclid to Noether |
title_full | Algebraic number theory for beginners following a path from Euclid to Noether John Stillwell (University of San Francisco) |
title_fullStr | Algebraic number theory for beginners following a path from Euclid to Noether John Stillwell (University of San Francisco) |
title_full_unstemmed | Algebraic number theory for beginners following a path from Euclid to Noether John Stillwell (University of San Francisco) |
title_short | Algebraic number theory for beginners |
title_sort | algebraic number theory for beginners following a path from euclid to noether |
title_sub | following a path from Euclid to Noether |
topic | Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
topic_facet | Algebraische Zahlentheorie |
work_keys_str_mv | AT stillwelljohn algebraicnumbertheoryforbeginnersfollowingapathfromeuclidtonoether |