Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants

This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that refl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Müller, Paul F. X. 1960- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge, United Kingdom Cambridge University Press 2022
Schriftenreihe:New mathematical monographs 43
Schlagworte:
Online-Zugang:DE-12
DE-634
DE-92
DE-91
DE-91G
DE-473
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV048379669
003 DE-604
005 20230307
007 cr|uuu---uuuuu
008 220727s2022 xx a||| o|||| 00||| eng d
020 |a 9781108976015  |c Online  |9 978-1-108-97601-5 
024 7 |a 10.1017/9781108976015  |2 doi 
035 |a (ZDB-20-CBO)CR9781108976015 
035 |a (OCoLC)1339067442 
035 |a (DE-599)BVBBV048379669 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92  |a DE-473  |a DE-91G 
082 0 |a 519.287 
084 |a SK 600  |0 (DE-625)143248:  |2 rvk 
084 |a MAT 605  |2 stub 
100 1 |a Müller, Paul F. X.  |d 1960-  |0 (DE-588)140915419  |4 aut 
245 1 0 |a Hardy martingales  |b stochastic holomorphy, L1-embeddings, and isomorphic invariants  |c Paul F. X. Müller 
264 1 |a Cambridge, United Kingdom  |b Cambridge University Press  |c 2022 
300 |a 1 Online-Ressource (xv, 500 Seiten)  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a New mathematical monographs  |v 43 
520 |a This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis 
650 4 |a Martingales (Mathematics) 
650 4 |a Stochastic analysis 
650 4 |a Ideal spaces 
650 4 |a Probabilities 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-1-108-83867-2 
830 0 |a New mathematical monographs  |v 43  |w (DE-604)BV045935264  |9 43 
856 4 0 |u https://doi.org/10.1017/9781108976015  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
943 1 |a oai:aleph.bib-bvb.de:BVB01-033758548 
966 e |u https://doi.org/10.1017/9781108976015  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108976015  |l DE-634  |p ZDB-20-CBO  |q BTU_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108976015  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108976015  |l DE-91  |p ZDB-20-CBO  |q TUM_Einzelkauf_2023  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108976015  |l DE-91G  |p ZDB-20-CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108976015  |l DE-473  |p ZDB-20-CBO  |q UBG_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2716805
_version_ 1820802359505190912
any_adam_object
author Müller, Paul F. X. 1960-
author_GND (DE-588)140915419
author_facet Müller, Paul F. X. 1960-
author_role aut
author_sort Müller, Paul F. X. 1960-
author_variant p f x m pfx pfxm
building Verbundindex
bvnumber BV048379669
classification_rvk SK 600
classification_tum MAT 605
collection ZDB-20-CBO
ctrlnum (ZDB-20-CBO)CR9781108976015
(OCoLC)1339067442
(DE-599)BVBBV048379669
dewey-full 519.287
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.287
dewey-search 519.287
dewey-sort 3519.287
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1017/9781108976015
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03214nam a2200505zcb4500</leader><controlfield tag="001">BV048379669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230307 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220727s2022 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108976015</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-97601-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108976015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108976015</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1339067442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048379669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.287</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 605</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Müller, Paul F. X.</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)140915419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hardy martingales</subfield><subfield code="b">stochastic holomorphy, L1-embeddings, and isomorphic invariants</subfield><subfield code="c">Paul F. X. Müller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 500 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">43</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ideal spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-83867-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">New mathematical monographs</subfield><subfield code="v">43</subfield><subfield code="w">(DE-604)BV045935264</subfield><subfield code="9">43</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033758548</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-91G</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV048379669
illustrated Illustrated
indexdate 2024-12-24T09:29:23Z
institution BVB
isbn 9781108976015
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033758548
oclc_num 1339067442
open_access_boolean
owner DE-12
DE-92
DE-473
DE-BY-UBG
DE-91G
DE-BY-TUM
owner_facet DE-12
DE-92
DE-473
DE-BY-UBG
DE-91G
DE-BY-TUM
physical 1 Online-Ressource (xv, 500 Seiten) Illustrationen, Diagramme
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO BTU_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
ZDB-20-CBO TUM_Einzelkauf_2023
ZDB-20-CBO UBG_PDA_CBO
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher Cambridge University Press
record_format marc
series New mathematical monographs
series2 New mathematical monographs
spellingShingle Müller, Paul F. X. 1960-
Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants
New mathematical monographs
Martingales (Mathematics)
Stochastic analysis
Ideal spaces
Probabilities
title Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants
title_auth Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants
title_exact_search Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants
title_full Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants Paul F. X. Müller
title_fullStr Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants Paul F. X. Müller
title_full_unstemmed Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants Paul F. X. Müller
title_short Hardy martingales
title_sort hardy martingales stochastic holomorphy l1 embeddings and isomorphic invariants
title_sub stochastic holomorphy, L1-embeddings, and isomorphic invariants
topic Martingales (Mathematics)
Stochastic analysis
Ideal spaces
Probabilities
topic_facet Martingales (Mathematics)
Stochastic analysis
Ideal spaces
Probabilities
url https://doi.org/10.1017/9781108976015
volume_link (DE-604)BV045935264
work_keys_str_mv AT mullerpaulfx hardymartingalesstochasticholomorphyl1embeddingsandisomorphicinvariants