Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants
This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that refl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom
Cambridge University Press
2022
|
Schriftenreihe: | New mathematical monographs
43 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-634 DE-92 DE-91 DE-91G DE-473 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV048379669 | ||
003 | DE-604 | ||
005 | 20230307 | ||
007 | cr|uuu---uuuuu | ||
008 | 220727s2022 xx a||| o|||| 00||| eng d | ||
020 | |a 9781108976015 |c Online |9 978-1-108-97601-5 | ||
024 | 7 | |a 10.1017/9781108976015 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108976015 | ||
035 | |a (OCoLC)1339067442 | ||
035 | |a (DE-599)BVBBV048379669 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-473 |a DE-91G | ||
082 | 0 | |a 519.287 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a MAT 605 |2 stub | ||
100 | 1 | |a Müller, Paul F. X. |d 1960- |0 (DE-588)140915419 |4 aut | |
245 | 1 | 0 | |a Hardy martingales |b stochastic holomorphy, L1-embeddings, and isomorphic invariants |c Paul F. X. Müller |
264 | 1 | |a Cambridge, United Kingdom |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xv, 500 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a New mathematical monographs |v 43 | |
520 | |a This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis | ||
650 | 4 | |a Martingales (Mathematics) | |
650 | 4 | |a Stochastic analysis | |
650 | 4 | |a Ideal spaces | |
650 | 4 | |a Probabilities | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-83867-2 |
830 | 0 | |a New mathematical monographs |v 43 |w (DE-604)BV045935264 |9 43 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108976015 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033758548 | |
966 | e | |u https://doi.org/10.1017/9781108976015 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108976015 |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108976015 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108976015 |l DE-91 |p ZDB-20-CBO |q TUM_Einzelkauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108976015 |l DE-91G |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108976015 |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2716805 |
---|---|
_version_ | 1820802359505190912 |
any_adam_object | |
author | Müller, Paul F. X. 1960- |
author_GND | (DE-588)140915419 |
author_facet | Müller, Paul F. X. 1960- |
author_role | aut |
author_sort | Müller, Paul F. X. 1960- |
author_variant | p f x m pfx pfxm |
building | Verbundindex |
bvnumber | BV048379669 |
classification_rvk | SK 600 |
classification_tum | MAT 605 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108976015 (OCoLC)1339067442 (DE-599)BVBBV048379669 |
dewey-full | 519.287 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.287 |
dewey-search | 519.287 |
dewey-sort | 3519.287 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781108976015 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03214nam a2200505zcb4500</leader><controlfield tag="001">BV048379669</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230307 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220727s2022 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108976015</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-97601-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108976015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108976015</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1339067442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048379669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.287</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 605</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Müller, Paul F. X.</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)140915419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hardy martingales</subfield><subfield code="b">stochastic holomorphy, L1-embeddings, and isomorphic invariants</subfield><subfield code="c">Paul F. X. Müller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 500 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">43</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ideal spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-83867-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">New mathematical monographs</subfield><subfield code="v">43</subfield><subfield code="w">(DE-604)BV045935264</subfield><subfield code="9">43</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033758548</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-91G</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108976015</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048379669 |
illustrated | Illustrated |
indexdate | 2024-12-24T09:29:23Z |
institution | BVB |
isbn | 9781108976015 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033758548 |
oclc_num | 1339067442 |
open_access_boolean | |
owner | DE-12 DE-92 DE-473 DE-BY-UBG DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-92 DE-473 DE-BY-UBG DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (xv, 500 Seiten) Illustrationen, Diagramme |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf_2023 ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series | New mathematical monographs |
series2 | New mathematical monographs |
spellingShingle | Müller, Paul F. X. 1960- Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants New mathematical monographs Martingales (Mathematics) Stochastic analysis Ideal spaces Probabilities |
title | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants |
title_auth | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants |
title_exact_search | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants |
title_full | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants Paul F. X. Müller |
title_fullStr | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants Paul F. X. Müller |
title_full_unstemmed | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants Paul F. X. Müller |
title_short | Hardy martingales |
title_sort | hardy martingales stochastic holomorphy l1 embeddings and isomorphic invariants |
title_sub | stochastic holomorphy, L1-embeddings, and isomorphic invariants |
topic | Martingales (Mathematics) Stochastic analysis Ideal spaces Probabilities |
topic_facet | Martingales (Mathematics) Stochastic analysis Ideal spaces Probabilities |
url | https://doi.org/10.1017/9781108976015 |
volume_link | (DE-604)BV045935264 |
work_keys_str_mv | AT mullerpaulfx hardymartingalesstochasticholomorphyl1embeddingsandisomorphicinvariants |