The risks of nuclear energy technology safety concepts of light water reactors
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
2015
|
Schriftenreihe: | Science policy reports
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048367342 | ||
003 | DE-604 | ||
007 | t | ||
008 | 220719s2015 gw a||| |||| 00||| eng d | ||
015 | |a 14,N13 |2 dnb | ||
015 | |a 15,A04 |2 dnb | ||
016 | 7 | |a 1048739678 |2 DE-101 | |
020 | |a 9783642551154 |c Pp. : EUR 74.85 (DE) (freier Pr.), EUR 76.95 (AT) (freier Pr.), sfr 93.50 (freier Pr.) |9 978-3-642-55115-4 | ||
020 | |a 3642551157 |9 3-642-55115-7 | ||
024 | 3 | |a 9783642551154 | |
028 | 5 | 2 | |a Best.-Nr.: 86205020 |
035 | |a (OCoLC)875019659 | ||
035 | |a (DE-599)DNB1048739678 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T | ||
082 | 0 | |a 621.4835 |2 22/ger | |
084 | |a 620 |2 sdnb | ||
100 | 1 | |a Kessler, Günter |e Verfasser |4 aut | |
245 | 1 | 0 | |a The risks of nuclear energy technology |b safety concepts of light water reactors |c Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer |
264 | 1 | |a Berlin ; Heidelberg |b Springer |c 2015 | |
300 | |a XIV, 364 Seiten |b Illustrationen, Diagramme |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Science policy reports | |
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Leichtwasserreaktor |0 (DE-588)4127706-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kernreaktorsicherheit |0 (DE-588)4144208-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Leichtwasserreaktor |0 (DE-588)4127706-5 |D s |
689 | 0 | 1 | |a Kernreaktorsicherheit |0 (DE-588)4144208-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Veser, Anke |e Verfasser |4 aut | |
700 | 1 | |a Schlüter, Franz-Hermann |e Verfasser |4 aut | |
700 | 1 | |a Raskob, Wolfgang |e Verfasser |4 aut | |
700 | 1 | |a Landman, Claudia |e Verfasser |4 aut | |
700 | 1 | |a Päsler-Sauer, Jürgen |e Verfasser |0 (DE-588)1158072589 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-642-55116-1 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=4618347&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033746442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033746442 |
Datensatz im Suchindex
_version_ | 1806414728485928960 |
---|---|
adam_text |
CONTENTS
PART I THE PHYSICAL AND TECHNICAL SAFETY CONCEPT OF LIGHT WATER
REACTORS
1 INTRODUCTION 3
1.1 URANIUM RESOURCES 5
1.2 URANIUM CONSUMPTION 6
1.3 URANIUM ENRICHMENT 7
1.4 SPENT FUEL REPROCESSING 7
REFERENCES 9
2 SOME FACTS ABOUT NEUTRON AND REACTOR PHYSICS 11
2.1 RADIOACTIVE DECAY, DECAY CONSTANT AND HALF-LIFE 12
2.2 FISSION PROCESS 12
2.3 NEUTRON REACTIONS 15
2.3.1 REACTION RATES 15
2.4 CRITICALITY OR EFFECTIVE MULTIPLICATION FACTOR KEFF 19
2.5 NEUTRON DENSITY AND POWER DISTRIBUTION 19
2.6 NEUTRON POISONS FOR THE CONTROL OF THE REACTOR POWER 22
2.7 FUEL BUMUP AND TRANSMUTATION DURING REACTOR OPERATION. 22
2.7.1 PREDICTION OF THE BURNUP EFFECTS 23
2.8 REACTOR CONTROL AND TEMPERATURE EFFECTS 23
2.9 AFTERHEAT OF THE FUEL ELEMENTS AFTER REACTOR SHUT DOWN . 24
2.10 NON-STEADY STATE POWER CONDITIONS AND NEGATIVE TEMPERATURE
FEEDBACK EFFECTS 25
2.10.1 THE FUEL-DOPPLER-TEMPERATURE COEFFICIENT 26
2.10.2 THE MODERATOR/COOLANT-TEMPERATURE COEFFICIENT OF
LWRS 26
2.11 BEHAVIOR OF THE REACTOR IN NON-STEADY STATE CONDITIONS. 28
REFERENCES 31
VII
HTTP://D-NB.INFO/1048739678
VIII CONTENTS
3 THE DESIGN OF LIGHT WATER REACTORS 33
3.1 LIGHT WATER REACTORS 34
3.2 PRESSURIZED WATER REACTORS 35
3.2.1 CORE 35
3.2.2 REACTOR PRESSURE VESSEL 38
3.2.3 COOLANT SYSTEM 38
3.2.4 CONTAINMENT BUILDING 44
3.2.5 AP1000 SAFETY DESIGN 47
3.2.6 THE US-APWR CONTAINMENT DESIGN 50
3.2.7 CONTROL SYSTEMS 51
3.2.8 PWR PROTECTION SYSTEM 52
3.3 BOILING WATER REACTORS 55
3.3.1 CORE, PRESSURE VESSEL AND COOLING SYSTEM
OF A BWR 56
3.3.2 BOILING WATER REACTOR SAFETY SYSTEMS 61
3.4 THE ADVANCED BOILING WATER REACTORS 69
3.4.1 CORE AND REACTOR PRESSURE VESSEL OF ABWR 69
3.4.2 THE ABWR SAFETY AND DEPRESSURIZATION SYSTEMS. 72
3.4.3 EMERGENCY COOLING AND AFTERHEAT REMOVAL SYSTEM
OF THE ABWR 72
3.4.4 EMERGENCY POWER SUPPLY OF ABWR 74
3.4.5 THE ABWR-11 DESIGN 74
REFERENCES 77
4 RADIOACTIVE RELEASES FROM NUCLEAR POWER PLANTS DURING NORMAL
OPERATION 79
4.1 RADIOACTIVE RELEASES AND EXPOSURE PATHWAYS 79
4.1.1 EXPOSURE PATHWAYS OF SIGNIFICANT RADIONUCLIDES . . . 81
4.2 RADIATION DOSE 83
4.3 NATURAL BACKGROUND RADIATION 84
4.3.1 NATURAL BACKGROUND EXPOSURE FROM NATURAL SOURCES
IN GERMANY 85
4.4 RADIATION EXPOSURE FROM MAN-MADE SOURCES 86
4.4.1 NUCLEAR WEAPONS TESTS 86
4.4.2 CHERNOBYL REACTOR ACCIDENT 86
4.4.3 NUCLEAR INSTALLATIONS 87
4.4.4 MEDICAL APPLICATIONS 87
4.4.5 THE HANDLING OF RADIOACTIVE SUBSTANCES IN RESEARCH
AND TECHNOLOGY 87
4.4.6 OCCUPATIONAL RADIATION EXPOSURE 88
4.5 RADIOBIOLOGICAL EFFECTS 88
4.5.1 STOCHASTIC EFFECT 89
4.5.2 DETERMINISTIC EFFECTS OF RADIATION 89
4.5.3 ACUTE RADIATION SYNDROME 90
CONTENTS IX
4.6 PERMISSIBLE EXPOSURE LIMITS FOR RADIATION EXPOSURES 90
4.6.1 LIMITS OF EFFECTIVE RADIATION DOSE FROM NUCLEAR
INSTALLATIONS IN NORMAL OPERATION 91
4.6.2 RADIATION EXPOSURE LIMIT FOR THE POPULATION 91
4.6.3 EXPOSURE LIMITS FOR PERSONS OCCUPATIONALLY EXPOSED
TO RADIATION 91
4.6.4 EXPOSURE LIMITS FOR PERSONS OF RESCUE OPERATION
TEAMS DURING A REACTOR CATASTROPHE 91
4.6.5 LIFE TIME OCCUPATIONAL EXPOSURE LIMIT 92
4.6.6 THE ALARA PRINCIPLE 92
4.7 NUCLEAR POWER PLANTS 92
4.7.1 RADIOACTIVE EFFLUENTS FROM PWRS AND BWRS 93
4.7.2 OCCUPATIONAL RADIATION EXPOSURE OF WORKERS IN
NUCLEAR POWER PLANTS 95
4.7.3 RADIATION EXPOSURES CAUSED BY RADIOACTIVE EMISSION
FROM LIGHT WATER REACTORS 95
4.7.4 COMPARISON WITH EMISSIONS OF RADIOACTIVE NUCLIDES
FROM A COAL FIRED PLANT 96
REFERENCES 97
5 SAFETY AND RISK OF LIGHT WATER REACTORS 99
5.1 INTRODUCTION 99
5.2 GOALS OF PROTECTION FOR NUCLEAR REACTORS AND FUEL CYCLE
FACILITIES 100
5.3 SAFETY CONCEPT OF NUCLEAR REACTOR PLANTS 101
5.3.1 CONTAINMENT BY RADIOACTIVITY ENCLOSURES 101
5.3.2 MULTIPLE LEVEL SAFETY PRINCIPLE 101
5.4 DESIGN BASIS ACCIDENTS 104
5.4.1 EVENTS EXCEEDING THE DESIGN BASIS 104
5.4.2 PROBABILISTIC SAFETY ANALYSES (PSA) 104
5.5 ATOMIC ENERGY ACT, ORDINANCES, REGULATIONS 105
5.6 DETAILED DESIGN REQUIREMENTS AT SAFETY LEVEL 1 106
5.6.1 THERMODYNAMIC DESIGN OF LWRS 106
5.6.2 NEUTRON PHYSICS DESIGN OF LWRS 107
5.6.3 INSTRUMENTATION, CONTROL, REACTIVITY PROTECTION
SYSTEM (SAFETY LEVEL 2) ILL
5.6.4 MECHANICAL DESIGN OF A PWR PRIMARY COOLING
SYSTEM 112
5.6.5 REACTOR CONTAINMENT 116
5.6.6 ANALYSES OF OPERATING TRANSIENTS (SAFETY LEVEL 3,
DESIGN BASIS ACCIDENTS) 118
5.6.7 TRANSIENTS WITH FAILURE OF SCRAM (SAFETY LEVEL 3). . 122
5.6.8 LOSS-OF-COOLANT ACCIDENTS (LOCAS) 122
REFERENCES 127
X
CONTENTS
6 PROBABILISTIC ANALYSES AND RISK STUDIES 131
6.1 GENERAL PROCEDURE OF A PROBABILISTIC RISK ANALYSIS. . 132
6.2 EVENT TREE METHOD 132
6.3 FAULT TREE ANALYSIS 135
6.4 RELEASES OF FISSION PRODUCTS FROM A REACTOR BUILDING
FOLLOWING A CORE MELTDOWN ACCIDENT 136
6.4.1 INITIATING EVENTS 136
6.4.2 FAILURE OF THE CONTAINMENT 136
6.4.3 RELEASES OF RADIOACTIVITY 137
6.4.4 DISTRIBUTION OF THE SPREAD OF RADIOACTIVITY AFTER A
REACTOR ACCIDENT IN THE ENVIRONMENT 137
6.5 PROTECTION AND COUNTERMEASURES 139
6.6 RESULTS OF REACTOR SAFETY STUDIES 141
6.6.1 RESULTS OF EVENT TREE AND FAULT TREE ANALYSES. . 141
6.6.2 SEVERE ACCIDENT MANAGEMENT MEASURES
(SAFETY LEVEL 4) 142
6.6.3 CORE MELT FREQUENCIES PER REACTOR YEAR FOR
KWU-PWR-1300, AP1000 AND EPR 143
6.7 RESULTS OF EVENT TREE AND FAULT TREE ANALYSES FOR BWRS. . . 143
6.7.1 CORE MELT FREQUENCIES FOR KWU-BWR-1300, ABWR,
ABWR-II AND SWR-1000 (KERENA) 145
6.8 RELEASE OF RADIOACTIVITY AS A CONSEQUENCE OF CORE MELT
DOWN 145
6.9 ACCIDENT CONSEQUENCES IN REACTOR RISK STUDIES 146
6.9.1 USE OF RESULTS OF REACTOR RISK STUDIES 147
6.9.2 SAFETY IMPROVEMENTS IMPLEMENTED IN REACTOR PLANTS
AFTER THE RISK STUDIES 148
REFERENCES 148
7 LIGHT WATER REACTOR DESIGN AGAINST EXTERNAL EVENTS 151
7.1 EARTHQUAKES 152
7.1.1 DEFINITION OF THE DESIGN BASIS EARTHQUAKE ACCORDING
TO KTA 2201 152
7.1.2 SEISMIC LOADS ACTING ON COMPONENTS IN NUCLEAR
POWER PLANTS 155
7.1.3 COMPARISON BETWEEN SEISMIC DESIGN AND SEISMIC
DAMAGE IN EXISTING NUCLEAR POWER PLANTS 158
7.2 DESIGN AGAINST AIRPLANE CRASH 159
7.3 CHEMICAL EXPLOSIONS 165
7.4 FLOODING 165
REFERENCES 166
CONTENTS XI
8 RISKOFLWRS 169
8.1 COMPARISON OF THE RISK OF LWRS WITH THE RISKS OF OTHER
TECHNICAL SYSTEMS 169
8.2 MAJOR ACCIDENTS IN THE POWER INDUSTRY 170
8.3 NATURAL DISASTERS 171
REFERENCES 172
9 THE SEVERE REACTOR ACCIDENTS OF THREE MILE ISLAND, CHERNOBYL,
AND FUKUSHIMA 173
9.1 THE ACCIDENT AT THREE MILE ISLAND 175
9.2 THE CHERNOBYL ACCIDENT 178
9.2.1 RADIATION EXPOSURE OF THE OPERATORS, RESCUE
PERSONNEL, AND THE POPULATION 182
9.2.2 CHERNOBYL ACCIDENT MANAGEMENT 183
9.2.3 CONTAMINATED LAND 183
9.3 THE REACTOR ACCIDENT OF FUKUSHIMA, JAPAN 185
9.3.1 SPENT FUEL POOLS OF THE FUKUSHIMA DAIICHI
UNITS 1-6 189
9.3.2 MEASUREMENT OF THE RADIOACTIVITY RELEASED 190
9.3.3 DAMAGE TO HEALTH CAUSED BY IONIZING RADIATION. . 191
9.3.4 CONTAMINATION BY CS-134 AND CS-137 192
9.3.5 LESSONS LEARNED 193
9.3.6 RECOMMENDATIONS DRAWN FROM THE FUKUSHIMA
ACCIDENT 194
9.4 COMPARISON OF SEVERE REACTOR ACCIDENT ON THE INTERNATIONAL
NUCLEAR EVENT SCALE 195
REFERENCES 197
10 ASSESSMENT OF RISK STUDIES AND SEVERE NUCLEAR ACCIDENTS 199
10.1 INTRODUCTION 200
10.2 PRINCIPLES OF THE KHE SAFETY CONCEPT FOR FUTURE LWRS. 201
10.3 NEW FINDINGS IN SAFETY RESEARCH 204
10.3.1 STEAM EXPLOSION (MOLTEN FUEL/WATER INTERACTION). . 204
10.3.2 HYDROGEN DETONATION 210
10.3.3 BREAK OF A PIPE OF THE RESIDUAL HEAT REMOVAL SYSTEM
IN THE ANNULUS OF THE CONTAINMENT BY STEAM 213
10.3.4 CORE MELTDOWN AFTER AN UNCONTROLLED LARGE SCALE
STEAM GENERATOR TUBE BREAK 213
10.3.5 CORE MELTDOWN UNDER HIGH PRIMARY COOLANT
PRESSURE 214
10.3.6 CORE MELT DOWN UNDER LOW COOLANT PRESSURE. . . . 216
10.3.7 MOLTEN CORE RETENTION AND COOLING DEVICE
(CORE CATCHER) 225
10.3.8 DIRECT HEATING PROBLEM 227
XII CONTENTS
10.3.9 SUMMARY OF SAFETY RESEARCH FINDINGS ABOUT THE
KHE SAFETY CONCEPT 227
10.4 SEVERE ACCIDENT MANAGEMENT MEASURES 229
10.5 PLANT INTERNAL SEVERE ACCIDENT MANAGEMENT MEASURES 229
10.6 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES
FOR LWRS 229
10.6.1 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES
FOR PWRS 229
10.6.2 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES
FOR BWRS 230
10.7 EMERGENCY CONTROL ROOMS 231
10.8 FLOODING OF THE REACTOR CAVITY OUTSIDE OF THE REACTOR PRESSURE
VESSEL 232
10.9 MOBILE RESCUE TEAMS 232
10.10 CONCLUDING REMARKS 232
REFERENCES 233
PART II SAFETY OF GERMAN LIGHT-WATER REACTORS IN THE EVENT OF A
POSTULATED AIRCRAFT IMPACT
11 INTRODUCTION 241
REFERENCES 242
12 OVERVIEW OF REQUIREMENTS AND CURRENT DESIGN 243
12.1 POSSIBLE ACTIONS 243
12.2 DESIGN REQUIREMENTS 244
12.3 DEVELOPMENT OF THE DESIGN IN GERMANY 245
REFERENCES 247
13 IMPACT SCENARIOS 249
13.1 GENERAL 249
13.2 ACCIDENTAL AIRCRAFT IMPACT 249
13.3 DELIBERATE FORCED AIRCRAFT IMPACT 252
13.3.1 RELEVANT AIRPLANE MODELS 253
13.3.2 APPROACH ANGLE AND APPROACH SPEED 256
REFERENCES 259
14 DETERMINATION OF A LOAD APPROACHES FOR AIRCRAFT IMPACTS 261
14.1 GENERAL INFORMATION 261
14.2 MATHEMATICAL MODELS TO DETERMINE AN IMPACT LOAD-TIME
FUNCTION 262
14.3 LOAD APPROACH FOR FAST FLYING MILITARY AIRCRAFT 266
14.3.1 LOAD APPROACH FOR STARFIGHTER 266
14.3.2 LOAD APPROACH FOR PHANTOM 266
CONTENTS XIII
14.4 LOAD APPROACHES FOR LARGE COMMERCIAL AIRCRAFT 269
14.4.1 LOAD APPROACH FOR A LONG-RANGE AIRCRAFT OF THE
TYPE BOEING 747 271
14.4.2 IMPACT AREAS BOEING 747 278
14.4.3 LOAD APPROACH FOR THE MEDIUM-RANGE AIRCRAFT OF
THE TYPE AIRBUS A320 279
14.5 COMPILATION OF THE LOAD APPROACHES 280
REFERENCES 282
15 VERIFICATION OF THE STRUCTURAL BEHAVIOUR IN THE EVENT OF AN
AIRPLANE IMPACT 285
15.1 GENERAL 285
15.2 LOCAL STRUCTURAL BEHAVIOUR: RESISTANCE TO PENETRATION 286
15.3 GLOBAL STRUCTURAL BEHAVIOUR: STRUCTURAL STABILITY 291
15.4 INDUCED VIBRATIONS 291
REFERENCES 295
16 SPECIAL CASES 297
16.1 ENGINE IMPACT 297
16.2 WRECKAGE, SMALL AIRCRAFT AND DEBRIS 299
16.3 JET FUEL FIRE 300
REFERENCES 301
17 EVALUATION OF THE SECURITY STATUS OF GERMAN AND FOREIGN
FACILITIES 303
17.1 SECURITY STATUS OF GERMAN REACTORS 303
17.2 DESIGN OF FOREIGN REACTORS 305
18 SUMMARY 307
PART III THE RODOS SYSTEM AS AN INSTANCE OF A EUROPEAN
COMPUTER-BASED DECISION SUPPORT SYSTEM FOR EMERGENCY
MANAGEMENT AFTER NUCLEAR ACCIDENTS
19 INTRODUCTION 311
REFERENCES 312
20 RELEVANT RADIOLOGICAL PHENOMENA, FUNDAMENTALS OF RADIOLOGICAL
EMERGENCY MANAGEMENT,
MODELING
OF RADIOLOGICAL SITUATION
. 315
20.1 FROM ATMOSPHERIC RADIOACTIVITY RELEASES TO HUMAN RADIATION
EXPOSURE 316
20.2 EFFECTS ON HEALTH FROM RADIATION EXPOSURE 318
20.3 EMERGENCY MANAGEMENT AND EMERGENCY MEASURES 320
20.3.1 BASICS OF EMERGENCY MANAGEMENT 320
20.3.2 DISTINCTION OF ACCIDENT PHASES FROM THE EMERGENCY
MANAGEMENT POINT OF VIEW 320
20.3.3 OFF-SITE RADIATION PROTECTION MEASURES AND THEIR
INITIATION 322
XIV CONTENTS
20.4 MODELING THE RADIOLOGICAL SITUATION (TERRESTRIAL PATHWAYS). . . 326
20.4.1 ATMOSPHERIC DISPERSION MODELS 326
20.4.2 MODELING RADIONUCLIDE DEPOSITION ONTO SURFACES. . . 328
20.4.3 PROCESSES AND MODELS FOR THE TRANSPORT OF ACTIVITY
THROUGH THE HUMAN FOOD CHAIN 330
20.5 CALCULATION OF DOSES FOR THE TERRESTRIAL EXPOSURE PATHWAYS. . . 332
20.5.1 DOSES FROM THE CLOUD AND FROM CONTAMINATED
SURFACES 332
20.5.2 DOSES FROM THE FOOD CHAIN 334
REFERENCES 334
21 THE DECISION SUPPORT SYSTEM RODOS 337
21.1 HISTORY 337
21.2 OVERVIEW OF THE MODELS CONTAINED IN RODOS 338
21.2.1 THE TERRESTRIAL MODEL CHAIN 339
21.2.2 THE MODELS FOR RADIOLOGICAL CONSEQUENCES IN
CONTAMINATED INHABITED AND AGRICULTURAL AREAS,
ERMIN AND AGRICP 341
21.2.3 THE HYDROLOGICAL MODEL CHAIN 342
21.3 REPRESENTATION OF LOCATION-DEPENDENT RESULTS IN RODOS. . . 343
21.4 THE RODOS CENTER IN GERMANY 344
21.4.1 DATA AND USER CONCEPT 344
21.4.2 MODES OF OPERATION IN THE RODOS CENTER 346
21.5 ADAPTATION TO NATIONAL CONDITIONS 346
REFERENCES 347
22 RODOS AND THE FUKUSHIMA ACCIDENT 349
23 RECENT DEVELOPMENTS IN NUCLEAR AND RADIOLOGICAL EMERGENCY
MANAGEMENT IN EUROPE 353
REFERENCE 354
INDEX 355 |
adam_txt |
CONTENTS
PART I THE PHYSICAL AND TECHNICAL SAFETY CONCEPT OF LIGHT WATER
REACTORS
1 INTRODUCTION 3
1.1 URANIUM RESOURCES 5
1.2 URANIUM CONSUMPTION 6
1.3 URANIUM ENRICHMENT 7
1.4 SPENT FUEL REPROCESSING 7
REFERENCES 9
2 SOME FACTS ABOUT NEUTRON AND REACTOR PHYSICS 11
2.1 RADIOACTIVE DECAY, DECAY CONSTANT AND HALF-LIFE 12
2.2 FISSION PROCESS 12
2.3 NEUTRON REACTIONS 15
2.3.1 REACTION RATES 15
2.4 CRITICALITY OR EFFECTIVE MULTIPLICATION FACTOR KEFF 19
2.5 NEUTRON DENSITY AND POWER DISTRIBUTION 19
2.6 NEUTRON POISONS FOR THE CONTROL OF THE REACTOR POWER 22
2.7 FUEL BUMUP AND TRANSMUTATION DURING REACTOR OPERATION. 22
2.7.1 PREDICTION OF THE BURNUP EFFECTS 23
2.8 REACTOR CONTROL AND TEMPERATURE EFFECTS 23
2.9 AFTERHEAT OF THE FUEL ELEMENTS AFTER REACTOR SHUT DOWN . 24
2.10 NON-STEADY STATE POWER CONDITIONS AND NEGATIVE TEMPERATURE
FEEDBACK EFFECTS 25
2.10.1 THE FUEL-DOPPLER-TEMPERATURE COEFFICIENT 26
2.10.2 THE MODERATOR/COOLANT-TEMPERATURE COEFFICIENT OF
LWRS 26
2.11 BEHAVIOR OF THE REACTOR IN NON-STEADY STATE CONDITIONS. 28
REFERENCES 31
VII
HTTP://D-NB.INFO/1048739678
VIII CONTENTS
3 THE DESIGN OF LIGHT WATER REACTORS 33
3.1 LIGHT WATER REACTORS 34
3.2 PRESSURIZED WATER REACTORS 35
3.2.1 CORE 35
3.2.2 REACTOR PRESSURE VESSEL 38
3.2.3 COOLANT SYSTEM 38
3.2.4 CONTAINMENT BUILDING 44
3.2.5 AP1000 SAFETY DESIGN 47
3.2.6 THE US-APWR CONTAINMENT DESIGN 50
3.2.7 CONTROL SYSTEMS 51
3.2.8 PWR PROTECTION SYSTEM 52
3.3 BOILING WATER REACTORS 55
3.3.1 CORE, PRESSURE VESSEL AND COOLING SYSTEM
OF A BWR 56
3.3.2 BOILING WATER REACTOR SAFETY SYSTEMS 61
3.4 THE ADVANCED BOILING WATER REACTORS 69
3.4.1 CORE AND REACTOR PRESSURE VESSEL OF ABWR 69
3.4.2 THE ABWR SAFETY AND DEPRESSURIZATION SYSTEMS. 72
3.4.3 EMERGENCY COOLING AND AFTERHEAT REMOVAL SYSTEM
OF THE ABWR 72
3.4.4 EMERGENCY POWER SUPPLY OF ABWR 74
3.4.5 THE ABWR-11 DESIGN 74
REFERENCES 77
4 RADIOACTIVE RELEASES FROM NUCLEAR POWER PLANTS DURING NORMAL
OPERATION 79
4.1 RADIOACTIVE RELEASES AND EXPOSURE PATHWAYS 79
4.1.1 EXPOSURE PATHWAYS OF SIGNIFICANT RADIONUCLIDES . . . 81
4.2 RADIATION DOSE 83
4.3 NATURAL BACKGROUND RADIATION 84
4.3.1 NATURAL BACKGROUND EXPOSURE FROM NATURAL SOURCES
IN GERMANY 85
4.4 RADIATION EXPOSURE FROM MAN-MADE SOURCES 86
4.4.1 NUCLEAR WEAPONS TESTS 86
4.4.2 CHERNOBYL REACTOR ACCIDENT 86
4.4.3 NUCLEAR INSTALLATIONS 87
4.4.4 MEDICAL APPLICATIONS 87
4.4.5 THE HANDLING OF RADIOACTIVE SUBSTANCES IN RESEARCH
AND TECHNOLOGY 87
4.4.6 OCCUPATIONAL RADIATION EXPOSURE 88
4.5 RADIOBIOLOGICAL EFFECTS 88
4.5.1 STOCHASTIC EFFECT 89
4.5.2 DETERMINISTIC EFFECTS OF RADIATION 89
4.5.3 ACUTE RADIATION SYNDROME 90
CONTENTS IX
4.6 PERMISSIBLE EXPOSURE LIMITS FOR RADIATION EXPOSURES 90
4.6.1 LIMITS OF EFFECTIVE RADIATION DOSE FROM NUCLEAR
INSTALLATIONS IN NORMAL OPERATION 91
4.6.2 RADIATION EXPOSURE LIMIT FOR THE POPULATION 91
4.6.3 EXPOSURE LIMITS FOR PERSONS OCCUPATIONALLY EXPOSED
TO RADIATION 91
4.6.4 EXPOSURE LIMITS FOR PERSONS OF RESCUE OPERATION
TEAMS DURING A REACTOR CATASTROPHE 91
4.6.5 LIFE TIME OCCUPATIONAL EXPOSURE LIMIT 92
4.6.6 THE ALARA PRINCIPLE 92
4.7 NUCLEAR POWER PLANTS 92
4.7.1 RADIOACTIVE EFFLUENTS FROM PWRS AND BWRS 93
4.7.2 OCCUPATIONAL RADIATION EXPOSURE OF WORKERS IN
NUCLEAR POWER PLANTS 95
4.7.3 RADIATION EXPOSURES CAUSED BY RADIOACTIVE EMISSION
FROM LIGHT WATER REACTORS 95
4.7.4 COMPARISON WITH EMISSIONS OF RADIOACTIVE NUCLIDES
FROM A COAL FIRED PLANT 96
REFERENCES 97
5 SAFETY AND RISK OF LIGHT WATER REACTORS 99
5.1 INTRODUCTION 99
5.2 GOALS OF PROTECTION FOR NUCLEAR REACTORS AND FUEL CYCLE
FACILITIES 100
5.3 SAFETY CONCEPT OF NUCLEAR REACTOR PLANTS 101
5.3.1 CONTAINMENT BY RADIOACTIVITY ENCLOSURES 101
5.3.2 MULTIPLE LEVEL SAFETY PRINCIPLE 101
5.4 DESIGN BASIS ACCIDENTS 104
5.4.1 EVENTS EXCEEDING THE DESIGN BASIS 104
5.4.2 PROBABILISTIC SAFETY ANALYSES (PSA) 104
5.5 ATOMIC ENERGY ACT, ORDINANCES, REGULATIONS 105
5.6 DETAILED DESIGN REQUIREMENTS AT SAFETY LEVEL 1 106
5.6.1 THERMODYNAMIC DESIGN OF LWRS 106
5.6.2 NEUTRON PHYSICS DESIGN OF LWRS 107
5.6.3 INSTRUMENTATION, CONTROL, REACTIVITY PROTECTION
SYSTEM (SAFETY LEVEL 2) ILL
5.6.4 MECHANICAL DESIGN OF A PWR PRIMARY COOLING
SYSTEM 112
5.6.5 REACTOR CONTAINMENT 116
5.6.6 ANALYSES OF OPERATING TRANSIENTS (SAFETY LEVEL 3,
DESIGN BASIS ACCIDENTS) 118
5.6.7 TRANSIENTS WITH FAILURE OF SCRAM (SAFETY LEVEL 3). . 122
5.6.8 LOSS-OF-COOLANT ACCIDENTS (LOCAS) 122
REFERENCES 127
X
CONTENTS
6 PROBABILISTIC ANALYSES AND RISK STUDIES 131
6.1 GENERAL PROCEDURE OF A PROBABILISTIC RISK ANALYSIS. . 132
6.2 EVENT TREE METHOD 132
6.3 FAULT TREE ANALYSIS 135
6.4 RELEASES OF FISSION PRODUCTS FROM A REACTOR BUILDING
FOLLOWING A CORE MELTDOWN ACCIDENT 136
6.4.1 INITIATING EVENTS 136
6.4.2 FAILURE OF THE CONTAINMENT 136
6.4.3 RELEASES OF RADIOACTIVITY 137
6.4.4 DISTRIBUTION OF THE SPREAD OF RADIOACTIVITY AFTER A
REACTOR ACCIDENT IN THE ENVIRONMENT 137
6.5 PROTECTION AND COUNTERMEASURES 139
6.6 RESULTS OF REACTOR SAFETY STUDIES 141
6.6.1 RESULTS OF EVENT TREE AND FAULT TREE ANALYSES. . 141
6.6.2 SEVERE ACCIDENT MANAGEMENT MEASURES
(SAFETY LEVEL 4) 142
6.6.3 CORE MELT FREQUENCIES PER REACTOR YEAR FOR
KWU-PWR-1300, AP1000 AND EPR 143
6.7 RESULTS OF EVENT TREE AND FAULT TREE ANALYSES FOR BWRS. . . 143
6.7.1 CORE MELT FREQUENCIES FOR KWU-BWR-1300, ABWR,
ABWR-II AND SWR-1000 (KERENA) 145
6.8 RELEASE OF RADIOACTIVITY AS A CONSEQUENCE OF CORE MELT
DOWN 145
6.9 ACCIDENT CONSEQUENCES IN REACTOR RISK STUDIES 146
6.9.1 USE OF RESULTS OF REACTOR RISK STUDIES 147
6.9.2 SAFETY IMPROVEMENTS IMPLEMENTED IN REACTOR PLANTS
AFTER THE RISK STUDIES 148
REFERENCES 148
7 LIGHT WATER REACTOR DESIGN AGAINST EXTERNAL EVENTS 151
7.1 EARTHQUAKES 152
7.1.1 DEFINITION OF THE DESIGN BASIS EARTHQUAKE ACCORDING
TO KTA 2201 152
7.1.2 SEISMIC LOADS ACTING ON COMPONENTS IN NUCLEAR
POWER PLANTS 155
7.1.3 COMPARISON BETWEEN SEISMIC DESIGN AND SEISMIC
DAMAGE IN EXISTING NUCLEAR POWER PLANTS 158
7.2 DESIGN AGAINST AIRPLANE CRASH 159
7.3 CHEMICAL EXPLOSIONS 165
7.4 FLOODING 165
REFERENCES 166
CONTENTS XI
8 RISKOFLWRS 169
8.1 COMPARISON OF THE RISK OF LWRS WITH THE RISKS OF OTHER
TECHNICAL SYSTEMS 169
8.2 MAJOR ACCIDENTS IN THE POWER INDUSTRY 170
8.3 NATURAL DISASTERS 171
REFERENCES 172
9 THE SEVERE REACTOR ACCIDENTS OF THREE MILE ISLAND, CHERNOBYL,
AND FUKUSHIMA 173
9.1 THE ACCIDENT AT THREE MILE ISLAND 175
9.2 THE CHERNOBYL ACCIDENT 178
9.2.1 RADIATION EXPOSURE OF THE OPERATORS, RESCUE
PERSONNEL, AND THE POPULATION 182
9.2.2 CHERNOBYL ACCIDENT MANAGEMENT 183
9.2.3 CONTAMINATED LAND 183
9.3 THE REACTOR ACCIDENT OF FUKUSHIMA, JAPAN 185
9.3.1 SPENT FUEL POOLS OF THE FUKUSHIMA DAIICHI
UNITS 1-6 189
9.3.2 MEASUREMENT OF THE RADIOACTIVITY RELEASED 190
9.3.3 DAMAGE TO HEALTH CAUSED BY IONIZING RADIATION. . 191
9.3.4 CONTAMINATION BY CS-134 AND CS-137 192
9.3.5 LESSONS LEARNED 193
9.3.6 RECOMMENDATIONS DRAWN FROM THE FUKUSHIMA
ACCIDENT 194
9.4 COMPARISON OF SEVERE REACTOR ACCIDENT ON THE INTERNATIONAL
NUCLEAR EVENT SCALE 195
REFERENCES 197
10 ASSESSMENT OF RISK STUDIES AND SEVERE NUCLEAR ACCIDENTS 199
10.1 INTRODUCTION 200
10.2 PRINCIPLES OF THE KHE SAFETY CONCEPT FOR FUTURE LWRS. 201
10.3 NEW FINDINGS IN SAFETY RESEARCH 204
10.3.1 STEAM EXPLOSION (MOLTEN FUEL/WATER INTERACTION). . 204
10.3.2 HYDROGEN DETONATION 210
10.3.3 BREAK OF A PIPE OF THE RESIDUAL HEAT REMOVAL SYSTEM
IN THE ANNULUS OF THE CONTAINMENT BY STEAM 213
10.3.4 CORE MELTDOWN AFTER AN UNCONTROLLED LARGE SCALE
STEAM GENERATOR TUBE BREAK 213
10.3.5 CORE MELTDOWN UNDER HIGH PRIMARY COOLANT
PRESSURE 214
10.3.6 CORE MELT DOWN UNDER LOW COOLANT PRESSURE. . . . 216
10.3.7 MOLTEN CORE RETENTION AND COOLING DEVICE
(CORE CATCHER) 225
10.3.8 DIRECT HEATING PROBLEM 227
XII CONTENTS
10.3.9 SUMMARY OF SAFETY RESEARCH FINDINGS ABOUT THE
KHE SAFETY CONCEPT 227
10.4 SEVERE ACCIDENT MANAGEMENT MEASURES 229
10.5 PLANT INTERNAL SEVERE ACCIDENT MANAGEMENT MEASURES 229
10.6 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES
FOR LWRS 229
10.6.1 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES
FOR PWRS 229
10.6.2 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES
FOR BWRS 230
10.7 EMERGENCY CONTROL ROOMS 231
10.8 FLOODING OF THE REACTOR CAVITY OUTSIDE OF THE REACTOR PRESSURE
VESSEL 232
10.9 MOBILE RESCUE TEAMS 232
10.10 CONCLUDING REMARKS 232
REFERENCES 233
PART II SAFETY OF GERMAN LIGHT-WATER REACTORS IN THE EVENT OF A
POSTULATED AIRCRAFT IMPACT
11 INTRODUCTION 241
REFERENCES 242
12 OVERVIEW OF REQUIREMENTS AND CURRENT DESIGN 243
12.1 POSSIBLE ACTIONS 243
12.2 DESIGN REQUIREMENTS 244
12.3 DEVELOPMENT OF THE DESIGN IN GERMANY 245
REFERENCES 247
13 IMPACT SCENARIOS 249
13.1 GENERAL 249
13.2 ACCIDENTAL AIRCRAFT IMPACT 249
13.3 DELIBERATE FORCED AIRCRAFT IMPACT 252
13.3.1 RELEVANT AIRPLANE MODELS 253
13.3.2 APPROACH ANGLE AND APPROACH SPEED 256
REFERENCES 259
14 DETERMINATION OF A LOAD APPROACHES FOR AIRCRAFT IMPACTS 261
14.1 GENERAL INFORMATION 261
14.2 MATHEMATICAL MODELS TO DETERMINE AN IMPACT LOAD-TIME
FUNCTION 262
14.3 LOAD APPROACH FOR FAST FLYING MILITARY AIRCRAFT 266
14.3.1 LOAD APPROACH FOR STARFIGHTER 266
14.3.2 LOAD APPROACH FOR PHANTOM 266
CONTENTS XIII
14.4 LOAD APPROACHES FOR LARGE COMMERCIAL AIRCRAFT 269
14.4.1 LOAD APPROACH FOR A LONG-RANGE AIRCRAFT OF THE
TYPE BOEING 747 271
14.4.2 IMPACT AREAS BOEING 747 278
14.4.3 LOAD APPROACH FOR THE MEDIUM-RANGE AIRCRAFT OF
THE TYPE AIRBUS A320 279
14.5 COMPILATION OF THE LOAD APPROACHES 280
REFERENCES 282
15 VERIFICATION OF THE STRUCTURAL BEHAVIOUR IN THE EVENT OF AN
AIRPLANE IMPACT 285
15.1 GENERAL 285
15.2 LOCAL STRUCTURAL BEHAVIOUR: RESISTANCE TO PENETRATION 286
15.3 GLOBAL STRUCTURAL BEHAVIOUR: STRUCTURAL STABILITY 291
15.4 INDUCED VIBRATIONS 291
REFERENCES 295
16 SPECIAL CASES 297
16.1 ENGINE IMPACT 297
16.2 WRECKAGE, SMALL AIRCRAFT AND DEBRIS 299
16.3 JET FUEL FIRE 300
REFERENCES 301
17 EVALUATION OF THE SECURITY STATUS OF GERMAN AND FOREIGN
FACILITIES 303
17.1 SECURITY STATUS OF GERMAN REACTORS 303
17.2 DESIGN OF FOREIGN REACTORS 305
18 SUMMARY 307
PART III THE RODOS SYSTEM AS AN INSTANCE OF A EUROPEAN
COMPUTER-BASED DECISION SUPPORT SYSTEM FOR EMERGENCY
MANAGEMENT AFTER NUCLEAR ACCIDENTS
19 INTRODUCTION 311
REFERENCES 312
20 RELEVANT RADIOLOGICAL PHENOMENA, FUNDAMENTALS OF RADIOLOGICAL
EMERGENCY MANAGEMENT,
MODELING
OF RADIOLOGICAL SITUATION
. 315
20.1 FROM ATMOSPHERIC RADIOACTIVITY RELEASES TO HUMAN RADIATION
EXPOSURE 316
20.2 EFFECTS ON HEALTH FROM RADIATION EXPOSURE 318
20.3 EMERGENCY MANAGEMENT AND EMERGENCY MEASURES 320
20.3.1 BASICS OF EMERGENCY MANAGEMENT 320
20.3.2 DISTINCTION OF ACCIDENT PHASES FROM THE EMERGENCY
MANAGEMENT POINT OF VIEW 320
20.3.3 OFF-SITE RADIATION PROTECTION MEASURES AND THEIR
INITIATION 322
XIV CONTENTS
20.4 MODELING THE RADIOLOGICAL SITUATION (TERRESTRIAL PATHWAYS). . . 326
20.4.1 ATMOSPHERIC DISPERSION MODELS 326
20.4.2 MODELING RADIONUCLIDE DEPOSITION ONTO SURFACES. . . 328
20.4.3 PROCESSES AND MODELS FOR THE TRANSPORT OF ACTIVITY
THROUGH THE HUMAN FOOD CHAIN 330
20.5 CALCULATION OF DOSES FOR THE TERRESTRIAL EXPOSURE PATHWAYS. . . 332
20.5.1 DOSES FROM THE CLOUD AND FROM CONTAMINATED
SURFACES 332
20.5.2 DOSES FROM THE FOOD CHAIN 334
REFERENCES 334
21 THE DECISION SUPPORT SYSTEM RODOS 337
21.1 HISTORY 337
21.2 OVERVIEW OF THE MODELS CONTAINED IN RODOS 338
21.2.1 THE TERRESTRIAL MODEL CHAIN 339
21.2.2 THE MODELS FOR RADIOLOGICAL CONSEQUENCES IN
CONTAMINATED INHABITED AND AGRICULTURAL AREAS,
ERMIN AND AGRICP 341
21.2.3 THE HYDROLOGICAL MODEL CHAIN 342
21.3 REPRESENTATION OF LOCATION-DEPENDENT RESULTS IN RODOS. . . 343
21.4 THE RODOS CENTER IN GERMANY 344
21.4.1 DATA AND USER CONCEPT 344
21.4.2 MODES OF OPERATION IN THE RODOS CENTER 346
21.5 ADAPTATION TO NATIONAL CONDITIONS 346
REFERENCES 347
22 RODOS AND THE FUKUSHIMA ACCIDENT 349
23 RECENT DEVELOPMENTS IN NUCLEAR AND RADIOLOGICAL EMERGENCY
MANAGEMENT IN EUROPE 353
REFERENCE 354
INDEX 355 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Kessler, Günter Veser, Anke Schlüter, Franz-Hermann Raskob, Wolfgang Landman, Claudia Päsler-Sauer, Jürgen |
author_GND | (DE-588)1158072589 |
author_facet | Kessler, Günter Veser, Anke Schlüter, Franz-Hermann Raskob, Wolfgang Landman, Claudia Päsler-Sauer, Jürgen |
author_role | aut aut aut aut aut aut |
author_sort | Kessler, Günter |
author_variant | g k gk a v av f h s fhs w r wr c l cl j p s jps |
building | Verbundindex |
bvnumber | BV048367342 |
ctrlnum | (OCoLC)875019659 (DE-599)DNB1048739678 |
dewey-full | 621.4835 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.4835 |
dewey-search | 621.4835 |
dewey-sort | 3621.4835 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Maschinenbau / Maschinenwesen Energietechnik |
discipline_str_mv | Maschinenbau / Maschinenwesen Energietechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048367342</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220719s2015 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">14,N13</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">15,A04</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1048739678</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642551154</subfield><subfield code="c">Pp. : EUR 74.85 (DE) (freier Pr.), EUR 76.95 (AT) (freier Pr.), sfr 93.50 (freier Pr.)</subfield><subfield code="9">978-3-642-55115-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642551157</subfield><subfield code="9">3-642-55115-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642551154</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Best.-Nr.: 86205020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)875019659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1048739678</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.4835</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kessler, Günter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The risks of nuclear energy technology</subfield><subfield code="b">safety concepts of light water reactors</subfield><subfield code="c">Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 364 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Science policy reports</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Leichtwasserreaktor</subfield><subfield code="0">(DE-588)4127706-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kernreaktorsicherheit</subfield><subfield code="0">(DE-588)4144208-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Leichtwasserreaktor</subfield><subfield code="0">(DE-588)4127706-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kernreaktorsicherheit</subfield><subfield code="0">(DE-588)4144208-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Veser, Anke</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlüter, Franz-Hermann</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raskob, Wolfgang</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Landman, Claudia</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Päsler-Sauer, Jürgen</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1158072589</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-55116-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4618347&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033746442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033746442</subfield></datafield></record></collection> |
id | DE-604.BV048367342 |
illustrated | Illustrated |
index_date | 2024-07-03T20:15:50Z |
indexdate | 2024-08-04T00:28:50Z |
institution | BVB |
isbn | 9783642551154 3642551157 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033746442 |
oclc_num | 875019659 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | XIV, 364 Seiten Illustrationen, Diagramme 24 cm |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series2 | Science policy reports |
spelling | Kessler, Günter Verfasser aut The risks of nuclear energy technology safety concepts of light water reactors Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer Berlin ; Heidelberg Springer 2015 XIV, 364 Seiten Illustrationen, Diagramme 24 cm txt rdacontent n rdamedia nc rdacarrier Science policy reports Literaturangaben Leichtwasserreaktor (DE-588)4127706-5 gnd rswk-swf Kernreaktorsicherheit (DE-588)4144208-8 gnd rswk-swf Leichtwasserreaktor (DE-588)4127706-5 s Kernreaktorsicherheit (DE-588)4144208-8 s DE-604 Veser, Anke Verfasser aut Schlüter, Franz-Hermann Verfasser aut Raskob, Wolfgang Verfasser aut Landman, Claudia Verfasser aut Päsler-Sauer, Jürgen Verfasser (DE-588)1158072589 aut Erscheint auch als Online-Ausgabe 978-3-642-55116-1 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=4618347&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033746442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kessler, Günter Veser, Anke Schlüter, Franz-Hermann Raskob, Wolfgang Landman, Claudia Päsler-Sauer, Jürgen The risks of nuclear energy technology safety concepts of light water reactors Leichtwasserreaktor (DE-588)4127706-5 gnd Kernreaktorsicherheit (DE-588)4144208-8 gnd |
subject_GND | (DE-588)4127706-5 (DE-588)4144208-8 |
title | The risks of nuclear energy technology safety concepts of light water reactors |
title_auth | The risks of nuclear energy technology safety concepts of light water reactors |
title_exact_search | The risks of nuclear energy technology safety concepts of light water reactors |
title_exact_search_txtP | The risks of nuclear energy technology safety concepts of light water reactors |
title_full | The risks of nuclear energy technology safety concepts of light water reactors Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer |
title_fullStr | The risks of nuclear energy technology safety concepts of light water reactors Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer |
title_full_unstemmed | The risks of nuclear energy technology safety concepts of light water reactors Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer |
title_short | The risks of nuclear energy technology |
title_sort | the risks of nuclear energy technology safety concepts of light water reactors |
title_sub | safety concepts of light water reactors |
topic | Leichtwasserreaktor (DE-588)4127706-5 gnd Kernreaktorsicherheit (DE-588)4144208-8 gnd |
topic_facet | Leichtwasserreaktor Kernreaktorsicherheit |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=4618347&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033746442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kesslergunter therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors AT veseranke therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors AT schluterfranzhermann therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors AT raskobwolfgang therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors AT landmanclaudia therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors AT paslersauerjurgen therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors |