The risks of nuclear energy technology safety concepts of light water reactors

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kessler, Günter (VerfasserIn), Veser, Anke (VerfasserIn), Schlüter, Franz-Hermann (VerfasserIn), Raskob, Wolfgang (VerfasserIn), Landman, Claudia (VerfasserIn), Päsler-Sauer, Jürgen (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin ; Heidelberg Springer 2015
Schriftenreihe:Science policy reports
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV048367342
003 DE-604
007 t
008 220719s2015 gw a||| |||| 00||| eng d
015 |a 14,N13  |2 dnb 
015 |a 15,A04  |2 dnb 
016 7 |a 1048739678  |2 DE-101 
020 |a 9783642551154  |c Pp. : EUR 74.85 (DE) (freier Pr.), EUR 76.95 (AT) (freier Pr.), sfr 93.50 (freier Pr.)  |9 978-3-642-55115-4 
020 |a 3642551157  |9 3-642-55115-7 
024 3 |a 9783642551154 
028 5 2 |a Best.-Nr.: 86205020 
035 |a (OCoLC)875019659 
035 |a (DE-599)DNB1048739678 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BW 
049 |a DE-29T 
082 0 |a 621.4835  |2 22/ger 
084 |a 620  |2 sdnb 
100 1 |a Kessler, Günter  |e Verfasser  |4 aut 
245 1 0 |a The risks of nuclear energy technology  |b safety concepts of light water reactors  |c Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer 
264 1 |a Berlin ; Heidelberg  |b Springer  |c 2015 
300 |a XIV, 364 Seiten  |b Illustrationen, Diagramme  |c 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Science policy reports 
500 |a Literaturangaben 
650 0 7 |a Leichtwasserreaktor  |0 (DE-588)4127706-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Kernreaktorsicherheit  |0 (DE-588)4144208-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Leichtwasserreaktor  |0 (DE-588)4127706-5  |D s 
689 0 1 |a Kernreaktorsicherheit  |0 (DE-588)4144208-8  |D s 
689 0 |5 DE-604 
700 1 |a Veser, Anke  |e Verfasser  |4 aut 
700 1 |a Schlüter, Franz-Hermann  |e Verfasser  |4 aut 
700 1 |a Raskob, Wolfgang  |e Verfasser  |4 aut 
700 1 |a Landman, Claudia  |e Verfasser  |4 aut 
700 1 |a Päsler-Sauer, Jürgen  |e Verfasser  |0 (DE-588)1158072589  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-642-55116-1 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=4618347&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033746442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-033746442 

Datensatz im Suchindex

_version_ 1806414728485928960
adam_text CONTENTS PART I THE PHYSICAL AND TECHNICAL SAFETY CONCEPT OF LIGHT WATER REACTORS 1 INTRODUCTION 3 1.1 URANIUM RESOURCES 5 1.2 URANIUM CONSUMPTION 6 1.3 URANIUM ENRICHMENT 7 1.4 SPENT FUEL REPROCESSING 7 REFERENCES 9 2 SOME FACTS ABOUT NEUTRON AND REACTOR PHYSICS 11 2.1 RADIOACTIVE DECAY, DECAY CONSTANT AND HALF-LIFE 12 2.2 FISSION PROCESS 12 2.3 NEUTRON REACTIONS 15 2.3.1 REACTION RATES 15 2.4 CRITICALITY OR EFFECTIVE MULTIPLICATION FACTOR KEFF 19 2.5 NEUTRON DENSITY AND POWER DISTRIBUTION 19 2.6 NEUTRON POISONS FOR THE CONTROL OF THE REACTOR POWER 22 2.7 FUEL BUMUP AND TRANSMUTATION DURING REACTOR OPERATION. 22 2.7.1 PREDICTION OF THE BURNUP EFFECTS 23 2.8 REACTOR CONTROL AND TEMPERATURE EFFECTS 23 2.9 AFTERHEAT OF THE FUEL ELEMENTS AFTER REACTOR SHUT DOWN . 24 2.10 NON-STEADY STATE POWER CONDITIONS AND NEGATIVE TEMPERATURE FEEDBACK EFFECTS 25 2.10.1 THE FUEL-DOPPLER-TEMPERATURE COEFFICIENT 26 2.10.2 THE MODERATOR/COOLANT-TEMPERATURE COEFFICIENT OF LWRS 26 2.11 BEHAVIOR OF THE REACTOR IN NON-STEADY STATE CONDITIONS. 28 REFERENCES 31 VII HTTP://D-NB.INFO/1048739678 VIII CONTENTS 3 THE DESIGN OF LIGHT WATER REACTORS 33 3.1 LIGHT WATER REACTORS 34 3.2 PRESSURIZED WATER REACTORS 35 3.2.1 CORE 35 3.2.2 REACTOR PRESSURE VESSEL 38 3.2.3 COOLANT SYSTEM 38 3.2.4 CONTAINMENT BUILDING 44 3.2.5 AP1000 SAFETY DESIGN 47 3.2.6 THE US-APWR CONTAINMENT DESIGN 50 3.2.7 CONTROL SYSTEMS 51 3.2.8 PWR PROTECTION SYSTEM 52 3.3 BOILING WATER REACTORS 55 3.3.1 CORE, PRESSURE VESSEL AND COOLING SYSTEM OF A BWR 56 3.3.2 BOILING WATER REACTOR SAFETY SYSTEMS 61 3.4 THE ADVANCED BOILING WATER REACTORS 69 3.4.1 CORE AND REACTOR PRESSURE VESSEL OF ABWR 69 3.4.2 THE ABWR SAFETY AND DEPRESSURIZATION SYSTEMS. 72 3.4.3 EMERGENCY COOLING AND AFTERHEAT REMOVAL SYSTEM OF THE ABWR 72 3.4.4 EMERGENCY POWER SUPPLY OF ABWR 74 3.4.5 THE ABWR-11 DESIGN 74 REFERENCES 77 4 RADIOACTIVE RELEASES FROM NUCLEAR POWER PLANTS DURING NORMAL OPERATION 79 4.1 RADIOACTIVE RELEASES AND EXPOSURE PATHWAYS 79 4.1.1 EXPOSURE PATHWAYS OF SIGNIFICANT RADIONUCLIDES . . . 81 4.2 RADIATION DOSE 83 4.3 NATURAL BACKGROUND RADIATION 84 4.3.1 NATURAL BACKGROUND EXPOSURE FROM NATURAL SOURCES IN GERMANY 85 4.4 RADIATION EXPOSURE FROM MAN-MADE SOURCES 86 4.4.1 NUCLEAR WEAPONS TESTS 86 4.4.2 CHERNOBYL REACTOR ACCIDENT 86 4.4.3 NUCLEAR INSTALLATIONS 87 4.4.4 MEDICAL APPLICATIONS 87 4.4.5 THE HANDLING OF RADIOACTIVE SUBSTANCES IN RESEARCH AND TECHNOLOGY 87 4.4.6 OCCUPATIONAL RADIATION EXPOSURE 88 4.5 RADIOBIOLOGICAL EFFECTS 88 4.5.1 STOCHASTIC EFFECT 89 4.5.2 DETERMINISTIC EFFECTS OF RADIATION 89 4.5.3 ACUTE RADIATION SYNDROME 90 CONTENTS IX 4.6 PERMISSIBLE EXPOSURE LIMITS FOR RADIATION EXPOSURES 90 4.6.1 LIMITS OF EFFECTIVE RADIATION DOSE FROM NUCLEAR INSTALLATIONS IN NORMAL OPERATION 91 4.6.2 RADIATION EXPOSURE LIMIT FOR THE POPULATION 91 4.6.3 EXPOSURE LIMITS FOR PERSONS OCCUPATIONALLY EXPOSED TO RADIATION 91 4.6.4 EXPOSURE LIMITS FOR PERSONS OF RESCUE OPERATION TEAMS DURING A REACTOR CATASTROPHE 91 4.6.5 LIFE TIME OCCUPATIONAL EXPOSURE LIMIT 92 4.6.6 THE ALARA PRINCIPLE 92 4.7 NUCLEAR POWER PLANTS 92 4.7.1 RADIOACTIVE EFFLUENTS FROM PWRS AND BWRS 93 4.7.2 OCCUPATIONAL RADIATION EXPOSURE OF WORKERS IN NUCLEAR POWER PLANTS 95 4.7.3 RADIATION EXPOSURES CAUSED BY RADIOACTIVE EMISSION FROM LIGHT WATER REACTORS 95 4.7.4 COMPARISON WITH EMISSIONS OF RADIOACTIVE NUCLIDES FROM A COAL FIRED PLANT 96 REFERENCES 97 5 SAFETY AND RISK OF LIGHT WATER REACTORS 99 5.1 INTRODUCTION 99 5.2 GOALS OF PROTECTION FOR NUCLEAR REACTORS AND FUEL CYCLE FACILITIES 100 5.3 SAFETY CONCEPT OF NUCLEAR REACTOR PLANTS 101 5.3.1 CONTAINMENT BY RADIOACTIVITY ENCLOSURES 101 5.3.2 MULTIPLE LEVEL SAFETY PRINCIPLE 101 5.4 DESIGN BASIS ACCIDENTS 104 5.4.1 EVENTS EXCEEDING THE DESIGN BASIS 104 5.4.2 PROBABILISTIC SAFETY ANALYSES (PSA) 104 5.5 ATOMIC ENERGY ACT, ORDINANCES, REGULATIONS 105 5.6 DETAILED DESIGN REQUIREMENTS AT SAFETY LEVEL 1 106 5.6.1 THERMODYNAMIC DESIGN OF LWRS 106 5.6.2 NEUTRON PHYSICS DESIGN OF LWRS 107 5.6.3 INSTRUMENTATION, CONTROL, REACTIVITY PROTECTION SYSTEM (SAFETY LEVEL 2) ILL 5.6.4 MECHANICAL DESIGN OF A PWR PRIMARY COOLING SYSTEM 112 5.6.5 REACTOR CONTAINMENT 116 5.6.6 ANALYSES OF OPERATING TRANSIENTS (SAFETY LEVEL 3, DESIGN BASIS ACCIDENTS) 118 5.6.7 TRANSIENTS WITH FAILURE OF SCRAM (SAFETY LEVEL 3). . 122 5.6.8 LOSS-OF-COOLANT ACCIDENTS (LOCAS) 122 REFERENCES 127 X CONTENTS 6 PROBABILISTIC ANALYSES AND RISK STUDIES 131 6.1 GENERAL PROCEDURE OF A PROBABILISTIC RISK ANALYSIS. . 132 6.2 EVENT TREE METHOD 132 6.3 FAULT TREE ANALYSIS 135 6.4 RELEASES OF FISSION PRODUCTS FROM A REACTOR BUILDING FOLLOWING A CORE MELTDOWN ACCIDENT 136 6.4.1 INITIATING EVENTS 136 6.4.2 FAILURE OF THE CONTAINMENT 136 6.4.3 RELEASES OF RADIOACTIVITY 137 6.4.4 DISTRIBUTION OF THE SPREAD OF RADIOACTIVITY AFTER A REACTOR ACCIDENT IN THE ENVIRONMENT 137 6.5 PROTECTION AND COUNTERMEASURES 139 6.6 RESULTS OF REACTOR SAFETY STUDIES 141 6.6.1 RESULTS OF EVENT TREE AND FAULT TREE ANALYSES. . 141 6.6.2 SEVERE ACCIDENT MANAGEMENT MEASURES (SAFETY LEVEL 4) 142 6.6.3 CORE MELT FREQUENCIES PER REACTOR YEAR FOR KWU-PWR-1300, AP1000 AND EPR 143 6.7 RESULTS OF EVENT TREE AND FAULT TREE ANALYSES FOR BWRS. . . 143 6.7.1 CORE MELT FREQUENCIES FOR KWU-BWR-1300, ABWR, ABWR-II AND SWR-1000 (KERENA) 145 6.8 RELEASE OF RADIOACTIVITY AS A CONSEQUENCE OF CORE MELT DOWN 145 6.9 ACCIDENT CONSEQUENCES IN REACTOR RISK STUDIES 146 6.9.1 USE OF RESULTS OF REACTOR RISK STUDIES 147 6.9.2 SAFETY IMPROVEMENTS IMPLEMENTED IN REACTOR PLANTS AFTER THE RISK STUDIES 148 REFERENCES 148 7 LIGHT WATER REACTOR DESIGN AGAINST EXTERNAL EVENTS 151 7.1 EARTHQUAKES 152 7.1.1 DEFINITION OF THE DESIGN BASIS EARTHQUAKE ACCORDING TO KTA 2201 152 7.1.2 SEISMIC LOADS ACTING ON COMPONENTS IN NUCLEAR POWER PLANTS 155 7.1.3 COMPARISON BETWEEN SEISMIC DESIGN AND SEISMIC DAMAGE IN EXISTING NUCLEAR POWER PLANTS 158 7.2 DESIGN AGAINST AIRPLANE CRASH 159 7.3 CHEMICAL EXPLOSIONS 165 7.4 FLOODING 165 REFERENCES 166 CONTENTS XI 8 RISKOFLWRS 169 8.1 COMPARISON OF THE RISK OF LWRS WITH THE RISKS OF OTHER TECHNICAL SYSTEMS 169 8.2 MAJOR ACCIDENTS IN THE POWER INDUSTRY 170 8.3 NATURAL DISASTERS 171 REFERENCES 172 9 THE SEVERE REACTOR ACCIDENTS OF THREE MILE ISLAND, CHERNOBYL, AND FUKUSHIMA 173 9.1 THE ACCIDENT AT THREE MILE ISLAND 175 9.2 THE CHERNOBYL ACCIDENT 178 9.2.1 RADIATION EXPOSURE OF THE OPERATORS, RESCUE PERSONNEL, AND THE POPULATION 182 9.2.2 CHERNOBYL ACCIDENT MANAGEMENT 183 9.2.3 CONTAMINATED LAND 183 9.3 THE REACTOR ACCIDENT OF FUKUSHIMA, JAPAN 185 9.3.1 SPENT FUEL POOLS OF THE FUKUSHIMA DAIICHI UNITS 1-6 189 9.3.2 MEASUREMENT OF THE RADIOACTIVITY RELEASED 190 9.3.3 DAMAGE TO HEALTH CAUSED BY IONIZING RADIATION. . 191 9.3.4 CONTAMINATION BY CS-134 AND CS-137 192 9.3.5 LESSONS LEARNED 193 9.3.6 RECOMMENDATIONS DRAWN FROM THE FUKUSHIMA ACCIDENT 194 9.4 COMPARISON OF SEVERE REACTOR ACCIDENT ON THE INTERNATIONAL NUCLEAR EVENT SCALE 195 REFERENCES 197 10 ASSESSMENT OF RISK STUDIES AND SEVERE NUCLEAR ACCIDENTS 199 10.1 INTRODUCTION 200 10.2 PRINCIPLES OF THE KHE SAFETY CONCEPT FOR FUTURE LWRS. 201 10.3 NEW FINDINGS IN SAFETY RESEARCH 204 10.3.1 STEAM EXPLOSION (MOLTEN FUEL/WATER INTERACTION). . 204 10.3.2 HYDROGEN DETONATION 210 10.3.3 BREAK OF A PIPE OF THE RESIDUAL HEAT REMOVAL SYSTEM IN THE ANNULUS OF THE CONTAINMENT BY STEAM 213 10.3.4 CORE MELTDOWN AFTER AN UNCONTROLLED LARGE SCALE STEAM GENERATOR TUBE BREAK 213 10.3.5 CORE MELTDOWN UNDER HIGH PRIMARY COOLANT PRESSURE 214 10.3.6 CORE MELT DOWN UNDER LOW COOLANT PRESSURE. . . . 216 10.3.7 MOLTEN CORE RETENTION AND COOLING DEVICE (CORE CATCHER) 225 10.3.8 DIRECT HEATING PROBLEM 227 XII CONTENTS 10.3.9 SUMMARY OF SAFETY RESEARCH FINDINGS ABOUT THE KHE SAFETY CONCEPT 227 10.4 SEVERE ACCIDENT MANAGEMENT MEASURES 229 10.5 PLANT INTERNAL SEVERE ACCIDENT MANAGEMENT MEASURES 229 10.6 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES FOR LWRS 229 10.6.1 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES FOR PWRS 229 10.6.2 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES FOR BWRS 230 10.7 EMERGENCY CONTROL ROOMS 231 10.8 FLOODING OF THE REACTOR CAVITY OUTSIDE OF THE REACTOR PRESSURE VESSEL 232 10.9 MOBILE RESCUE TEAMS 232 10.10 CONCLUDING REMARKS 232 REFERENCES 233 PART II SAFETY OF GERMAN LIGHT-WATER REACTORS IN THE EVENT OF A POSTULATED AIRCRAFT IMPACT 11 INTRODUCTION 241 REFERENCES 242 12 OVERVIEW OF REQUIREMENTS AND CURRENT DESIGN 243 12.1 POSSIBLE ACTIONS 243 12.2 DESIGN REQUIREMENTS 244 12.3 DEVELOPMENT OF THE DESIGN IN GERMANY 245 REFERENCES 247 13 IMPACT SCENARIOS 249 13.1 GENERAL 249 13.2 ACCIDENTAL AIRCRAFT IMPACT 249 13.3 DELIBERATE FORCED AIRCRAFT IMPACT 252 13.3.1 RELEVANT AIRPLANE MODELS 253 13.3.2 APPROACH ANGLE AND APPROACH SPEED 256 REFERENCES 259 14 DETERMINATION OF A LOAD APPROACHES FOR AIRCRAFT IMPACTS 261 14.1 GENERAL INFORMATION 261 14.2 MATHEMATICAL MODELS TO DETERMINE AN IMPACT LOAD-TIME FUNCTION 262 14.3 LOAD APPROACH FOR FAST FLYING MILITARY AIRCRAFT 266 14.3.1 LOAD APPROACH FOR STARFIGHTER 266 14.3.2 LOAD APPROACH FOR PHANTOM 266 CONTENTS XIII 14.4 LOAD APPROACHES FOR LARGE COMMERCIAL AIRCRAFT 269 14.4.1 LOAD APPROACH FOR A LONG-RANGE AIRCRAFT OF THE TYPE BOEING 747 271 14.4.2 IMPACT AREAS BOEING 747 278 14.4.3 LOAD APPROACH FOR THE MEDIUM-RANGE AIRCRAFT OF THE TYPE AIRBUS A320 279 14.5 COMPILATION OF THE LOAD APPROACHES 280 REFERENCES 282 15 VERIFICATION OF THE STRUCTURAL BEHAVIOUR IN THE EVENT OF AN AIRPLANE IMPACT 285 15.1 GENERAL 285 15.2 LOCAL STRUCTURAL BEHAVIOUR: RESISTANCE TO PENETRATION 286 15.3 GLOBAL STRUCTURAL BEHAVIOUR: STRUCTURAL STABILITY 291 15.4 INDUCED VIBRATIONS 291 REFERENCES 295 16 SPECIAL CASES 297 16.1 ENGINE IMPACT 297 16.2 WRECKAGE, SMALL AIRCRAFT AND DEBRIS 299 16.3 JET FUEL FIRE 300 REFERENCES 301 17 EVALUATION OF THE SECURITY STATUS OF GERMAN AND FOREIGN FACILITIES 303 17.1 SECURITY STATUS OF GERMAN REACTORS 303 17.2 DESIGN OF FOREIGN REACTORS 305 18 SUMMARY 307 PART III THE RODOS SYSTEM AS AN INSTANCE OF A EUROPEAN COMPUTER-BASED DECISION SUPPORT SYSTEM FOR EMERGENCY MANAGEMENT AFTER NUCLEAR ACCIDENTS 19 INTRODUCTION 311 REFERENCES 312 20 RELEVANT RADIOLOGICAL PHENOMENA, FUNDAMENTALS OF RADIOLOGICAL EMERGENCY MANAGEMENT, MODELING OF RADIOLOGICAL SITUATION . 315 20.1 FROM ATMOSPHERIC RADIOACTIVITY RELEASES TO HUMAN RADIATION EXPOSURE 316 20.2 EFFECTS ON HEALTH FROM RADIATION EXPOSURE 318 20.3 EMERGENCY MANAGEMENT AND EMERGENCY MEASURES 320 20.3.1 BASICS OF EMERGENCY MANAGEMENT 320 20.3.2 DISTINCTION OF ACCIDENT PHASES FROM THE EMERGENCY MANAGEMENT POINT OF VIEW 320 20.3.3 OFF-SITE RADIATION PROTECTION MEASURES AND THEIR INITIATION 322 XIV CONTENTS 20.4 MODELING THE RADIOLOGICAL SITUATION (TERRESTRIAL PATHWAYS). . . 326 20.4.1 ATMOSPHERIC DISPERSION MODELS 326 20.4.2 MODELING RADIONUCLIDE DEPOSITION ONTO SURFACES. . . 328 20.4.3 PROCESSES AND MODELS FOR THE TRANSPORT OF ACTIVITY THROUGH THE HUMAN FOOD CHAIN 330 20.5 CALCULATION OF DOSES FOR THE TERRESTRIAL EXPOSURE PATHWAYS. . . 332 20.5.1 DOSES FROM THE CLOUD AND FROM CONTAMINATED SURFACES 332 20.5.2 DOSES FROM THE FOOD CHAIN 334 REFERENCES 334 21 THE DECISION SUPPORT SYSTEM RODOS 337 21.1 HISTORY 337 21.2 OVERVIEW OF THE MODELS CONTAINED IN RODOS 338 21.2.1 THE TERRESTRIAL MODEL CHAIN 339 21.2.2 THE MODELS FOR RADIOLOGICAL CONSEQUENCES IN CONTAMINATED INHABITED AND AGRICULTURAL AREAS, ERMIN AND AGRICP 341 21.2.3 THE HYDROLOGICAL MODEL CHAIN 342 21.3 REPRESENTATION OF LOCATION-DEPENDENT RESULTS IN RODOS. . . 343 21.4 THE RODOS CENTER IN GERMANY 344 21.4.1 DATA AND USER CONCEPT 344 21.4.2 MODES OF OPERATION IN THE RODOS CENTER 346 21.5 ADAPTATION TO NATIONAL CONDITIONS 346 REFERENCES 347 22 RODOS AND THE FUKUSHIMA ACCIDENT 349 23 RECENT DEVELOPMENTS IN NUCLEAR AND RADIOLOGICAL EMERGENCY MANAGEMENT IN EUROPE 353 REFERENCE 354 INDEX 355
adam_txt CONTENTS PART I THE PHYSICAL AND TECHNICAL SAFETY CONCEPT OF LIGHT WATER REACTORS 1 INTRODUCTION 3 1.1 URANIUM RESOURCES 5 1.2 URANIUM CONSUMPTION 6 1.3 URANIUM ENRICHMENT 7 1.4 SPENT FUEL REPROCESSING 7 REFERENCES 9 2 SOME FACTS ABOUT NEUTRON AND REACTOR PHYSICS 11 2.1 RADIOACTIVE DECAY, DECAY CONSTANT AND HALF-LIFE 12 2.2 FISSION PROCESS 12 2.3 NEUTRON REACTIONS 15 2.3.1 REACTION RATES 15 2.4 CRITICALITY OR EFFECTIVE MULTIPLICATION FACTOR KEFF 19 2.5 NEUTRON DENSITY AND POWER DISTRIBUTION 19 2.6 NEUTRON POISONS FOR THE CONTROL OF THE REACTOR POWER 22 2.7 FUEL BUMUP AND TRANSMUTATION DURING REACTOR OPERATION. 22 2.7.1 PREDICTION OF THE BURNUP EFFECTS 23 2.8 REACTOR CONTROL AND TEMPERATURE EFFECTS 23 2.9 AFTERHEAT OF THE FUEL ELEMENTS AFTER REACTOR SHUT DOWN . 24 2.10 NON-STEADY STATE POWER CONDITIONS AND NEGATIVE TEMPERATURE FEEDBACK EFFECTS 25 2.10.1 THE FUEL-DOPPLER-TEMPERATURE COEFFICIENT 26 2.10.2 THE MODERATOR/COOLANT-TEMPERATURE COEFFICIENT OF LWRS 26 2.11 BEHAVIOR OF THE REACTOR IN NON-STEADY STATE CONDITIONS. 28 REFERENCES 31 VII HTTP://D-NB.INFO/1048739678 VIII CONTENTS 3 THE DESIGN OF LIGHT WATER REACTORS 33 3.1 LIGHT WATER REACTORS 34 3.2 PRESSURIZED WATER REACTORS 35 3.2.1 CORE 35 3.2.2 REACTOR PRESSURE VESSEL 38 3.2.3 COOLANT SYSTEM 38 3.2.4 CONTAINMENT BUILDING 44 3.2.5 AP1000 SAFETY DESIGN 47 3.2.6 THE US-APWR CONTAINMENT DESIGN 50 3.2.7 CONTROL SYSTEMS 51 3.2.8 PWR PROTECTION SYSTEM 52 3.3 BOILING WATER REACTORS 55 3.3.1 CORE, PRESSURE VESSEL AND COOLING SYSTEM OF A BWR 56 3.3.2 BOILING WATER REACTOR SAFETY SYSTEMS 61 3.4 THE ADVANCED BOILING WATER REACTORS 69 3.4.1 CORE AND REACTOR PRESSURE VESSEL OF ABWR 69 3.4.2 THE ABWR SAFETY AND DEPRESSURIZATION SYSTEMS. 72 3.4.3 EMERGENCY COOLING AND AFTERHEAT REMOVAL SYSTEM OF THE ABWR 72 3.4.4 EMERGENCY POWER SUPPLY OF ABWR 74 3.4.5 THE ABWR-11 DESIGN 74 REFERENCES 77 4 RADIOACTIVE RELEASES FROM NUCLEAR POWER PLANTS DURING NORMAL OPERATION 79 4.1 RADIOACTIVE RELEASES AND EXPOSURE PATHWAYS 79 4.1.1 EXPOSURE PATHWAYS OF SIGNIFICANT RADIONUCLIDES . . . 81 4.2 RADIATION DOSE 83 4.3 NATURAL BACKGROUND RADIATION 84 4.3.1 NATURAL BACKGROUND EXPOSURE FROM NATURAL SOURCES IN GERMANY 85 4.4 RADIATION EXPOSURE FROM MAN-MADE SOURCES 86 4.4.1 NUCLEAR WEAPONS TESTS 86 4.4.2 CHERNOBYL REACTOR ACCIDENT 86 4.4.3 NUCLEAR INSTALLATIONS 87 4.4.4 MEDICAL APPLICATIONS 87 4.4.5 THE HANDLING OF RADIOACTIVE SUBSTANCES IN RESEARCH AND TECHNOLOGY 87 4.4.6 OCCUPATIONAL RADIATION EXPOSURE 88 4.5 RADIOBIOLOGICAL EFFECTS 88 4.5.1 STOCHASTIC EFFECT 89 4.5.2 DETERMINISTIC EFFECTS OF RADIATION 89 4.5.3 ACUTE RADIATION SYNDROME 90 CONTENTS IX 4.6 PERMISSIBLE EXPOSURE LIMITS FOR RADIATION EXPOSURES 90 4.6.1 LIMITS OF EFFECTIVE RADIATION DOSE FROM NUCLEAR INSTALLATIONS IN NORMAL OPERATION 91 4.6.2 RADIATION EXPOSURE LIMIT FOR THE POPULATION 91 4.6.3 EXPOSURE LIMITS FOR PERSONS OCCUPATIONALLY EXPOSED TO RADIATION 91 4.6.4 EXPOSURE LIMITS FOR PERSONS OF RESCUE OPERATION TEAMS DURING A REACTOR CATASTROPHE 91 4.6.5 LIFE TIME OCCUPATIONAL EXPOSURE LIMIT 92 4.6.6 THE ALARA PRINCIPLE 92 4.7 NUCLEAR POWER PLANTS 92 4.7.1 RADIOACTIVE EFFLUENTS FROM PWRS AND BWRS 93 4.7.2 OCCUPATIONAL RADIATION EXPOSURE OF WORKERS IN NUCLEAR POWER PLANTS 95 4.7.3 RADIATION EXPOSURES CAUSED BY RADIOACTIVE EMISSION FROM LIGHT WATER REACTORS 95 4.7.4 COMPARISON WITH EMISSIONS OF RADIOACTIVE NUCLIDES FROM A COAL FIRED PLANT 96 REFERENCES 97 5 SAFETY AND RISK OF LIGHT WATER REACTORS 99 5.1 INTRODUCTION 99 5.2 GOALS OF PROTECTION FOR NUCLEAR REACTORS AND FUEL CYCLE FACILITIES 100 5.3 SAFETY CONCEPT OF NUCLEAR REACTOR PLANTS 101 5.3.1 CONTAINMENT BY RADIOACTIVITY ENCLOSURES 101 5.3.2 MULTIPLE LEVEL SAFETY PRINCIPLE 101 5.4 DESIGN BASIS ACCIDENTS 104 5.4.1 EVENTS EXCEEDING THE DESIGN BASIS 104 5.4.2 PROBABILISTIC SAFETY ANALYSES (PSA) 104 5.5 ATOMIC ENERGY ACT, ORDINANCES, REGULATIONS 105 5.6 DETAILED DESIGN REQUIREMENTS AT SAFETY LEVEL 1 106 5.6.1 THERMODYNAMIC DESIGN OF LWRS 106 5.6.2 NEUTRON PHYSICS DESIGN OF LWRS 107 5.6.3 INSTRUMENTATION, CONTROL, REACTIVITY PROTECTION SYSTEM (SAFETY LEVEL 2) ILL 5.6.4 MECHANICAL DESIGN OF A PWR PRIMARY COOLING SYSTEM 112 5.6.5 REACTOR CONTAINMENT 116 5.6.6 ANALYSES OF OPERATING TRANSIENTS (SAFETY LEVEL 3, DESIGN BASIS ACCIDENTS) 118 5.6.7 TRANSIENTS WITH FAILURE OF SCRAM (SAFETY LEVEL 3). . 122 5.6.8 LOSS-OF-COOLANT ACCIDENTS (LOCAS) 122 REFERENCES 127 X CONTENTS 6 PROBABILISTIC ANALYSES AND RISK STUDIES 131 6.1 GENERAL PROCEDURE OF A PROBABILISTIC RISK ANALYSIS. . 132 6.2 EVENT TREE METHOD 132 6.3 FAULT TREE ANALYSIS 135 6.4 RELEASES OF FISSION PRODUCTS FROM A REACTOR BUILDING FOLLOWING A CORE MELTDOWN ACCIDENT 136 6.4.1 INITIATING EVENTS 136 6.4.2 FAILURE OF THE CONTAINMENT 136 6.4.3 RELEASES OF RADIOACTIVITY 137 6.4.4 DISTRIBUTION OF THE SPREAD OF RADIOACTIVITY AFTER A REACTOR ACCIDENT IN THE ENVIRONMENT 137 6.5 PROTECTION AND COUNTERMEASURES 139 6.6 RESULTS OF REACTOR SAFETY STUDIES 141 6.6.1 RESULTS OF EVENT TREE AND FAULT TREE ANALYSES. . 141 6.6.2 SEVERE ACCIDENT MANAGEMENT MEASURES (SAFETY LEVEL 4) 142 6.6.3 CORE MELT FREQUENCIES PER REACTOR YEAR FOR KWU-PWR-1300, AP1000 AND EPR 143 6.7 RESULTS OF EVENT TREE AND FAULT TREE ANALYSES FOR BWRS. . . 143 6.7.1 CORE MELT FREQUENCIES FOR KWU-BWR-1300, ABWR, ABWR-II AND SWR-1000 (KERENA) 145 6.8 RELEASE OF RADIOACTIVITY AS A CONSEQUENCE OF CORE MELT DOWN 145 6.9 ACCIDENT CONSEQUENCES IN REACTOR RISK STUDIES 146 6.9.1 USE OF RESULTS OF REACTOR RISK STUDIES 147 6.9.2 SAFETY IMPROVEMENTS IMPLEMENTED IN REACTOR PLANTS AFTER THE RISK STUDIES 148 REFERENCES 148 7 LIGHT WATER REACTOR DESIGN AGAINST EXTERNAL EVENTS 151 7.1 EARTHQUAKES 152 7.1.1 DEFINITION OF THE DESIGN BASIS EARTHQUAKE ACCORDING TO KTA 2201 152 7.1.2 SEISMIC LOADS ACTING ON COMPONENTS IN NUCLEAR POWER PLANTS 155 7.1.3 COMPARISON BETWEEN SEISMIC DESIGN AND SEISMIC DAMAGE IN EXISTING NUCLEAR POWER PLANTS 158 7.2 DESIGN AGAINST AIRPLANE CRASH 159 7.3 CHEMICAL EXPLOSIONS 165 7.4 FLOODING 165 REFERENCES 166 CONTENTS XI 8 RISKOFLWRS 169 8.1 COMPARISON OF THE RISK OF LWRS WITH THE RISKS OF OTHER TECHNICAL SYSTEMS 169 8.2 MAJOR ACCIDENTS IN THE POWER INDUSTRY 170 8.3 NATURAL DISASTERS 171 REFERENCES 172 9 THE SEVERE REACTOR ACCIDENTS OF THREE MILE ISLAND, CHERNOBYL, AND FUKUSHIMA 173 9.1 THE ACCIDENT AT THREE MILE ISLAND 175 9.2 THE CHERNOBYL ACCIDENT 178 9.2.1 RADIATION EXPOSURE OF THE OPERATORS, RESCUE PERSONNEL, AND THE POPULATION 182 9.2.2 CHERNOBYL ACCIDENT MANAGEMENT 183 9.2.3 CONTAMINATED LAND 183 9.3 THE REACTOR ACCIDENT OF FUKUSHIMA, JAPAN 185 9.3.1 SPENT FUEL POOLS OF THE FUKUSHIMA DAIICHI UNITS 1-6 189 9.3.2 MEASUREMENT OF THE RADIOACTIVITY RELEASED 190 9.3.3 DAMAGE TO HEALTH CAUSED BY IONIZING RADIATION. . 191 9.3.4 CONTAMINATION BY CS-134 AND CS-137 192 9.3.5 LESSONS LEARNED 193 9.3.6 RECOMMENDATIONS DRAWN FROM THE FUKUSHIMA ACCIDENT 194 9.4 COMPARISON OF SEVERE REACTOR ACCIDENT ON THE INTERNATIONAL NUCLEAR EVENT SCALE 195 REFERENCES 197 10 ASSESSMENT OF RISK STUDIES AND SEVERE NUCLEAR ACCIDENTS 199 10.1 INTRODUCTION 200 10.2 PRINCIPLES OF THE KHE SAFETY CONCEPT FOR FUTURE LWRS. 201 10.3 NEW FINDINGS IN SAFETY RESEARCH 204 10.3.1 STEAM EXPLOSION (MOLTEN FUEL/WATER INTERACTION). . 204 10.3.2 HYDROGEN DETONATION 210 10.3.3 BREAK OF A PIPE OF THE RESIDUAL HEAT REMOVAL SYSTEM IN THE ANNULUS OF THE CONTAINMENT BY STEAM 213 10.3.4 CORE MELTDOWN AFTER AN UNCONTROLLED LARGE SCALE STEAM GENERATOR TUBE BREAK 213 10.3.5 CORE MELTDOWN UNDER HIGH PRIMARY COOLANT PRESSURE 214 10.3.6 CORE MELT DOWN UNDER LOW COOLANT PRESSURE. . . . 216 10.3.7 MOLTEN CORE RETENTION AND COOLING DEVICE (CORE CATCHER) 225 10.3.8 DIRECT HEATING PROBLEM 227 XII CONTENTS 10.3.9 SUMMARY OF SAFETY RESEARCH FINDINGS ABOUT THE KHE SAFETY CONCEPT 227 10.4 SEVERE ACCIDENT MANAGEMENT MEASURES 229 10.5 PLANT INTERNAL SEVERE ACCIDENT MANAGEMENT MEASURES 229 10.6 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES FOR LWRS 229 10.6.1 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES FOR PWRS 229 10.6.2 EXAMPLES FOR SEVERE ACCIDENT MANAGEMENT MEASURES FOR BWRS 230 10.7 EMERGENCY CONTROL ROOMS 231 10.8 FLOODING OF THE REACTOR CAVITY OUTSIDE OF THE REACTOR PRESSURE VESSEL 232 10.9 MOBILE RESCUE TEAMS 232 10.10 CONCLUDING REMARKS 232 REFERENCES 233 PART II SAFETY OF GERMAN LIGHT-WATER REACTORS IN THE EVENT OF A POSTULATED AIRCRAFT IMPACT 11 INTRODUCTION 241 REFERENCES 242 12 OVERVIEW OF REQUIREMENTS AND CURRENT DESIGN 243 12.1 POSSIBLE ACTIONS 243 12.2 DESIGN REQUIREMENTS 244 12.3 DEVELOPMENT OF THE DESIGN IN GERMANY 245 REFERENCES 247 13 IMPACT SCENARIOS 249 13.1 GENERAL 249 13.2 ACCIDENTAL AIRCRAFT IMPACT 249 13.3 DELIBERATE FORCED AIRCRAFT IMPACT 252 13.3.1 RELEVANT AIRPLANE MODELS 253 13.3.2 APPROACH ANGLE AND APPROACH SPEED 256 REFERENCES 259 14 DETERMINATION OF A LOAD APPROACHES FOR AIRCRAFT IMPACTS 261 14.1 GENERAL INFORMATION 261 14.2 MATHEMATICAL MODELS TO DETERMINE AN IMPACT LOAD-TIME FUNCTION 262 14.3 LOAD APPROACH FOR FAST FLYING MILITARY AIRCRAFT 266 14.3.1 LOAD APPROACH FOR STARFIGHTER 266 14.3.2 LOAD APPROACH FOR PHANTOM 266 CONTENTS XIII 14.4 LOAD APPROACHES FOR LARGE COMMERCIAL AIRCRAFT 269 14.4.1 LOAD APPROACH FOR A LONG-RANGE AIRCRAFT OF THE TYPE BOEING 747 271 14.4.2 IMPACT AREAS BOEING 747 278 14.4.3 LOAD APPROACH FOR THE MEDIUM-RANGE AIRCRAFT OF THE TYPE AIRBUS A320 279 14.5 COMPILATION OF THE LOAD APPROACHES 280 REFERENCES 282 15 VERIFICATION OF THE STRUCTURAL BEHAVIOUR IN THE EVENT OF AN AIRPLANE IMPACT 285 15.1 GENERAL 285 15.2 LOCAL STRUCTURAL BEHAVIOUR: RESISTANCE TO PENETRATION 286 15.3 GLOBAL STRUCTURAL BEHAVIOUR: STRUCTURAL STABILITY 291 15.4 INDUCED VIBRATIONS 291 REFERENCES 295 16 SPECIAL CASES 297 16.1 ENGINE IMPACT 297 16.2 WRECKAGE, SMALL AIRCRAFT AND DEBRIS 299 16.3 JET FUEL FIRE 300 REFERENCES 301 17 EVALUATION OF THE SECURITY STATUS OF GERMAN AND FOREIGN FACILITIES 303 17.1 SECURITY STATUS OF GERMAN REACTORS 303 17.2 DESIGN OF FOREIGN REACTORS 305 18 SUMMARY 307 PART III THE RODOS SYSTEM AS AN INSTANCE OF A EUROPEAN COMPUTER-BASED DECISION SUPPORT SYSTEM FOR EMERGENCY MANAGEMENT AFTER NUCLEAR ACCIDENTS 19 INTRODUCTION 311 REFERENCES 312 20 RELEVANT RADIOLOGICAL PHENOMENA, FUNDAMENTALS OF RADIOLOGICAL EMERGENCY MANAGEMENT, MODELING OF RADIOLOGICAL SITUATION . 315 20.1 FROM ATMOSPHERIC RADIOACTIVITY RELEASES TO HUMAN RADIATION EXPOSURE 316 20.2 EFFECTS ON HEALTH FROM RADIATION EXPOSURE 318 20.3 EMERGENCY MANAGEMENT AND EMERGENCY MEASURES 320 20.3.1 BASICS OF EMERGENCY MANAGEMENT 320 20.3.2 DISTINCTION OF ACCIDENT PHASES FROM THE EMERGENCY MANAGEMENT POINT OF VIEW 320 20.3.3 OFF-SITE RADIATION PROTECTION MEASURES AND THEIR INITIATION 322 XIV CONTENTS 20.4 MODELING THE RADIOLOGICAL SITUATION (TERRESTRIAL PATHWAYS). . . 326 20.4.1 ATMOSPHERIC DISPERSION MODELS 326 20.4.2 MODELING RADIONUCLIDE DEPOSITION ONTO SURFACES. . . 328 20.4.3 PROCESSES AND MODELS FOR THE TRANSPORT OF ACTIVITY THROUGH THE HUMAN FOOD CHAIN 330 20.5 CALCULATION OF DOSES FOR THE TERRESTRIAL EXPOSURE PATHWAYS. . . 332 20.5.1 DOSES FROM THE CLOUD AND FROM CONTAMINATED SURFACES 332 20.5.2 DOSES FROM THE FOOD CHAIN 334 REFERENCES 334 21 THE DECISION SUPPORT SYSTEM RODOS 337 21.1 HISTORY 337 21.2 OVERVIEW OF THE MODELS CONTAINED IN RODOS 338 21.2.1 THE TERRESTRIAL MODEL CHAIN 339 21.2.2 THE MODELS FOR RADIOLOGICAL CONSEQUENCES IN CONTAMINATED INHABITED AND AGRICULTURAL AREAS, ERMIN AND AGRICP 341 21.2.3 THE HYDROLOGICAL MODEL CHAIN 342 21.3 REPRESENTATION OF LOCATION-DEPENDENT RESULTS IN RODOS. . . 343 21.4 THE RODOS CENTER IN GERMANY 344 21.4.1 DATA AND USER CONCEPT 344 21.4.2 MODES OF OPERATION IN THE RODOS CENTER 346 21.5 ADAPTATION TO NATIONAL CONDITIONS 346 REFERENCES 347 22 RODOS AND THE FUKUSHIMA ACCIDENT 349 23 RECENT DEVELOPMENTS IN NUCLEAR AND RADIOLOGICAL EMERGENCY MANAGEMENT IN EUROPE 353 REFERENCE 354 INDEX 355
any_adam_object 1
any_adam_object_boolean 1
author Kessler, Günter
Veser, Anke
Schlüter, Franz-Hermann
Raskob, Wolfgang
Landman, Claudia
Päsler-Sauer, Jürgen
author_GND (DE-588)1158072589
author_facet Kessler, Günter
Veser, Anke
Schlüter, Franz-Hermann
Raskob, Wolfgang
Landman, Claudia
Päsler-Sauer, Jürgen
author_role aut
aut
aut
aut
aut
aut
author_sort Kessler, Günter
author_variant g k gk
a v av
f h s fhs
w r wr
c l cl
j p s jps
building Verbundindex
bvnumber BV048367342
ctrlnum (OCoLC)875019659
(DE-599)DNB1048739678
dewey-full 621.4835
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621.4835
dewey-search 621.4835
dewey-sort 3621.4835
dewey-tens 620 - Engineering and allied operations
discipline Maschinenbau / Maschinenwesen
Energietechnik
discipline_str_mv Maschinenbau / Maschinenwesen
Energietechnik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048367342</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220719s2015 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">14,N13</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">15,A04</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1048739678</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642551154</subfield><subfield code="c">Pp. : EUR 74.85 (DE) (freier Pr.), EUR 76.95 (AT) (freier Pr.), sfr 93.50 (freier Pr.)</subfield><subfield code="9">978-3-642-55115-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642551157</subfield><subfield code="9">3-642-55115-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642551154</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Best.-Nr.: 86205020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)875019659</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1048739678</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.4835</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kessler, Günter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The risks of nuclear energy technology</subfield><subfield code="b">safety concepts of light water reactors</subfield><subfield code="c">Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 364 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Science policy reports</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Leichtwasserreaktor</subfield><subfield code="0">(DE-588)4127706-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kernreaktorsicherheit</subfield><subfield code="0">(DE-588)4144208-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Leichtwasserreaktor</subfield><subfield code="0">(DE-588)4127706-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kernreaktorsicherheit</subfield><subfield code="0">(DE-588)4144208-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Veser, Anke</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlüter, Franz-Hermann</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raskob, Wolfgang</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Landman, Claudia</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Päsler-Sauer, Jürgen</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1158072589</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-55116-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4618347&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=033746442&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033746442</subfield></datafield></record></collection>
id DE-604.BV048367342
illustrated Illustrated
index_date 2024-07-03T20:15:50Z
indexdate 2024-08-04T00:28:50Z
institution BVB
isbn 9783642551154
3642551157
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033746442
oclc_num 875019659
open_access_boolean
owner DE-29T
owner_facet DE-29T
physical XIV, 364 Seiten Illustrationen, Diagramme 24 cm
publishDate 2015
publishDateSearch 2015
publishDateSort 2015
publisher Springer
record_format marc
series2 Science policy reports
spelling Kessler, Günter Verfasser aut
The risks of nuclear energy technology safety concepts of light water reactors Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer
Berlin ; Heidelberg Springer 2015
XIV, 364 Seiten Illustrationen, Diagramme 24 cm
txt rdacontent
n rdamedia
nc rdacarrier
Science policy reports
Literaturangaben
Leichtwasserreaktor (DE-588)4127706-5 gnd rswk-swf
Kernreaktorsicherheit (DE-588)4144208-8 gnd rswk-swf
Leichtwasserreaktor (DE-588)4127706-5 s
Kernreaktorsicherheit (DE-588)4144208-8 s
DE-604
Veser, Anke Verfasser aut
Schlüter, Franz-Hermann Verfasser aut
Raskob, Wolfgang Verfasser aut
Landman, Claudia Verfasser aut
Päsler-Sauer, Jürgen Verfasser (DE-588)1158072589 aut
Erscheint auch als Online-Ausgabe 978-3-642-55116-1
X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=4618347&prov=M&dok_var=1&dok_ext=htm Inhaltstext
DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033746442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Kessler, Günter
Veser, Anke
Schlüter, Franz-Hermann
Raskob, Wolfgang
Landman, Claudia
Päsler-Sauer, Jürgen
The risks of nuclear energy technology safety concepts of light water reactors
Leichtwasserreaktor (DE-588)4127706-5 gnd
Kernreaktorsicherheit (DE-588)4144208-8 gnd
subject_GND (DE-588)4127706-5
(DE-588)4144208-8
title The risks of nuclear energy technology safety concepts of light water reactors
title_auth The risks of nuclear energy technology safety concepts of light water reactors
title_exact_search The risks of nuclear energy technology safety concepts of light water reactors
title_exact_search_txtP ˜Theœ risks of nuclear energy technology safety concepts of light water reactors
title_full The risks of nuclear energy technology safety concepts of light water reactors Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer
title_fullStr The risks of nuclear energy technology safety concepts of light water reactors Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer
title_full_unstemmed The risks of nuclear energy technology safety concepts of light water reactors Günter Kessler, Anke Veser, Franz-Hermann Schlüter, Wolfgang Raskob, Claudia Landman, Jürgen Päsler-Sauer
title_short The risks of nuclear energy technology
title_sort the risks of nuclear energy technology safety concepts of light water reactors
title_sub safety concepts of light water reactors
topic Leichtwasserreaktor (DE-588)4127706-5 gnd
Kernreaktorsicherheit (DE-588)4144208-8 gnd
topic_facet Leichtwasserreaktor
Kernreaktorsicherheit
url http://deposit.dnb.de/cgi-bin/dokserv?id=4618347&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033746442&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT kesslergunter therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors
AT veseranke therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors
AT schluterfranzhermann therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors
AT raskobwolfgang therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors
AT landmanclaudia therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors
AT paslersauerjurgen therisksofnuclearenergytechnologysafetyconceptsoflightwaterreactors