Introduction to Statistics in Metrology

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Crowder, Stephen (VerfasserIn), Delker, Collin (VerfasserIn), Forrest, Eric (VerfasserIn), Martin, Nevin (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cham Springer International Publishing AG 2020
Schlagworte:
Online-Zugang:FHD01
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Intro
  • Preface
  • Contents
  • About the Authors
  • Chapter 1: Introduction
  • 1.1 Measurement Uncertainty: Why Do We Care?
  • 1.2 The History of Measurement
  • 1.3 Measurement Science and Technological Development
  • 1.4 Allegations of Deflated Footballs (''Deflategate'')
  • 1.5 Fatality Rates During a Pandemic
  • 1.6 Summary
  • 1.7 Related Reading
  • References
  • Chapter 2: Basic Measurement Concepts
  • 2.1 Introduction
  • 2.2 Measurement Terminology
  • 2.2.1 General Measurement Terminology
  • 2.2.1.1 Measurand
  • 2.2.1.2 True Value (True Value of a Quantity)
  • 2.2.1.3 Measurement Accuracy
  • 2.2.1.4 Measurement Precision
  • 2.2.1.5 Resolution
  • 2.2.1.6 Measurement Repeatability
  • 2.2.1.7 Measurement Reproducibility
  • 2.2.1.8 Independence of Measurements
  • 2.2.2 Error Approach Terminology
  • 2.2.2.1 Measurement Error
  • 2.2.2.2 Systematic Measurement Error
  • 2.2.2.3 Random Measurement Error
  • 2.2.3 Uncertainty Approach Terminology
  • 2.2.3.1 Measurement Uncertainty
  • 2.2.3.2 Level of Confidence (Coverage Probability)
  • 2.2.3.3 Coverage Interval
  • 2.2.3.4 Measurement Model
  • 2.2.4 Terminology of Calibration
  • 2.2.4.1 Measuring and Test Equipment (M&amp
  • TE)
  • 2.2.4.2 Metrological Traceability
  • 2.2.4.3 Calibration
  • 2.2.4.4 Tolerance Test
  • 2.2.4.5 Certification Uncertainty
  • 2.3 Types of Measurements
  • 2.3.1 Physical Measurements
  • 2.3.2 Electrical Measurements
  • 2.3.3 Other Types of Measurements
  • 2.4 Sources of Uncertainty
  • 2.4.1 Evaluating Sources of Uncertainty
  • 2.5 Summary
  • 2.6 Related Reading
  • 2.7 Exercises
  • References
  • Chapter 3: The International System of Units, Traceability, and Calibration
  • 3.1 History of the SI and Base Units
  • 3.1.1 SI Constants
  • 3.1.2 Time: Second (s)
  • 3.1.3 Length: Meter (m)
  • 3.1.4 Mass: Kilogram (kg)
  • 3.1.5 Electric Current: Ampere (A)
  • 3.1.6 Temperature: Kelvin (K)
  • 3.1.7 Quantity of Substance: Mole (mol)
  • 3.1.8 Luminous Intensity: Candela (cd)
  • 3.2 Derived Units
  • 3.3 Unit Realizations
  • 3.3.1 Gauge Block Interferometer
  • 3.3.2 Josephson Volt
  • 3.4 Advancements in Unit Definitions
  • 3.4.1 Kibble (Watt) Balance
  • 3.4.2 Intrinsic Pressure Standard
  • 3.5 Metrological Traceability
  • 3.6 Measurement Standards
  • 3.6.1 Certified Reference Materials
  • 3.6.2 Check Standards
  • 3.7 Calibration
  • 3.7.1 The Calibration Cycle
  • 3.7.2 Legal Aspects of Calibration
  • 3.7.3 Technical Aspects of Calibration
  • 3.7.4 Calibration Policies and Requirements
  • 3.7.4.1 ISO 17025
  • 3.7.4.2 ANSI Z540.1 and ANSI/NCSL Z540.3:2006
  • 3.8 Summary
  • 3.9 Related Reading
  • 3.10 Exercises
  • References
  • Chapter 4: Introduction to Statistics and Probability
  • 4.1 Introduction
  • 4.2 Types of Data
  • 4.3 Exploratory Data Analysis
  • 4.3.1 Calculating Summary Statistics
  • 4.3.1.1 Summary Statistics for Continuous Data
  • 4.3.1.2 Summary Statistics for Discrete Data
  • 4.3.2 Graphical Displays of Data
  • 4.3.2.1 Graphical Displays for Continuous Data
  • 4.3.2.2 Graphical Displays for Discrete Data
  • 4.4 Probability Distributions
  • 4.4.1 Identification of Probability Distributions
  • 4.4.1.1 Continuous Distributions
  • 4.4.1.2 Discrete Distributions
  • 4.4.2 Estimating Distribution Parameters
  • 4.4.3 Assessing Distributional Fit
  • 4.5 Related Reading
  • 4.6 Exercises
  • References
  • Chapter 5: Measurement Uncertainty in Decision Making
  • 5.1 Introduction
  • 5.2 Measurement Uncertainty and Risk
  • 5.2.1 Measurement Uncertainty and Risk in Manufacturing
  • 5.2.1.1 Test Uncertainty Ratio
  • 5.2.1.2 Measurement Decisions
  • 5.2.1.3 False Accept and False Reject Risks
  • 5.2.1.4 Guardbanding
  • 5.2.1.5 Risk with Biased Measurements
  • 5.2.2 Measurement Uncertainty and Risk in Calibration
  • 5.2.2.1 Decision Rules in Calibration
  • 5.3 Summary
  • 5.4 Related Reading
  • 5.5 Exercises
  • References
  • Chapter 6: The Measurement Model and Uncertainty
  • 6.1 Introduction
  • 6.2 Uncertainty Analysis Framework
  • 6.2.1 Standard Uncertainty
  • 6.2.2 Type A Uncertainty Evaluation
  • 6.2.3 Type B Uncertainty Evaluation
  • 6.2.4 Combined Standard Uncertainty
  • 6.2.5 Confidence Level and Expanded Uncertainty
  • 6.3 Direct Measurements and the Basic Measurement Model
  • 6.3.1 Case Study: Voltage Measurement
  • 6.3.2 Discussion
  • 6.4 Indirect Measurements and the Indirect Measurement Model
  • 6.4.1 Case Study: Neutron Yield Measurement
  • 6.4.2 Discussion
  • 6.5 Related Reading
  • 6.6 Exercises
  • References
  • Chapter 7: Analytical Methods for the Propagation of Uncertainties
  • 7.1 Introduction
  • 7.2 Mathematical Basis
  • 7.3 The Simple Case: First-Order Terms with Uncorrelated Inputs
  • 7.3.1 Measurement Examples
  • 7.4 First-Order Terms with Correlated Inputs
  • 7.4.1 Covariance, Correlation, and Effect on Uncertainty
  • 7.4.2 Measurement Examples
  • 7.5 Higher-Order Terms with Uncorrelated Inputs
  • 7.5.1 Measurement Examples
  • 7.6 Multiple Output Quantities
  • 7.7 Limitations of the Analytical Approach
  • 7.8 Related Reading
  • 7.9 Exercises
  • References
  • Chapter 8: Monte Carlo Methods for the Propagation of Uncertainties
  • 8.1 Introduction to Monte Carlo Methods
  • 8.1.1 Random Sampling Techniques and Random Number Generation
  • 8.1.1.1 Sampling from Normal and Non-Normal Distributions
  • 8.1.1.2 Generating Correlated Random Samples (Normal Distribution)
  • 8.1.2 Generation of Probability Density Functions Using Random Data
  • 8.1.3 Computational Approaches
  • 8.1.3.1 Linear Congruential Generator
  • 8.1.3.2 Better PRNG Algorithms
  • 8.2 Standard Monte Carlo for Uncertainty Propagation
  • 8.2.1 Monte Carlo Techniques
  • 8.2.1.1 Case Study: Calculating Density
  • 8.2.1.2 Sensitivity Coefficients
  • 8.2.1.3 Convergence Plots and Adaptive Sampling
  • 8.3 Comparison to the GUM
  • 8.3.1 Quantitative GUM Validity Test
  • 8.4 Monte Carlo Case Studies
  • 8.4.1 Case Study: Neutron Yield Measurement
  • 8.4.2 Case Study: RC Circuit
  • 8.5 Summary
  • 8.6 Related Reading
  • 8.7 Exercises
  • References
  • Chapter 9: Design of Experiments in Metrology
  • 9.1 Introduction
  • 9.2 Factorial Experiments in Metrology
  • 9.2.1 Defining the Measurand and Objective of the Experiment
  • 9.2.2 Selecting Factors to Incorporate in the Experiment
  • 9.2.3 Selecting Factor Levels and Design Pattern
  • 9.2.4 Analysis of CMM Errors via Design of Experiments (24 Full Factorial)
  • 9.2.5 Finite Element Method (FEM) Uncertainty Analysis via Design of Experiments (27-3 Fractional Factorial)
  • 9.2.6 Summary of Factorial DOEx Method
  • 9.3 ANOVA Models in Metrology
  • 9.3.1 Random Effects Models
  • 9.3.2 Mixed Effects Models
  • 9.3.3 Underlying ANOVA Assumptions
  • 9.3.4 Gauge R&amp
  • R Study (Random Effects Model)
  • 9.3.5 Voltage Standard Uncertainty Analysis (Mixed Effects Model)
  • 9.3.6 Summary of ANOVA Method
  • 9.4 Related Reading
  • 9.5 Exercises
  • References
  • Chapter 10: Determining Uncertainties in Fitted Curves
  • 10.1 The Purpose of Fitting Curves to Experimental Data
  • 10.1.1 Resistance vs. Temperature Data
  • 10.1.2 Considerations When Fitting Models to Data
  • 10.2 Methods for Fitting Curves to Experimental Data
  • 10.2.1 Linear Least Squares
  • 10.2.2 Uncertainty in Fitting Parameters
  • 10.2.3 Weighted Least Squares: Non-constant u(y)
  • 10.2.4 Weighted Least Squares: Uncertainty in Both x and y
  • 10.3 Uncertainty of a Regression Line
  • 10.3.1 Uncertainty of Fitting Parameters
  • 10.3.2 Confidence Bands
  • 10.3.3 Prediction Bands
  • 10.4 How Good Is the Model?
  • 10.4.1 Residual Analysis
  • 10.4.2 Slope Test
  • 10.4.3 Quantitative Residual Analysis
  • 10.5 Uncertainty in Nonlinear Regression
  • 10.5.1 Nonlinear Least Squares
  • 10.5.2 Orthogonal Distance Regression
  • 10.5.3 Confidence and Prediction Bands in Nonlinear Regression
  • 10.6 Using Monte Carlo for Evaluating Uncertainties in Curve Fitting
  • 10.6.1 Monte Carlo Approach
  • 10.6.2 Markov-Chain Monte Carlo Approach
  • 10.7 Case Study: Contact Resistance
  • 10.8 Drift and Predicting Future Values
  • 10.8.1 Uncertainty During Use
  • 10.8.2 Validating Drift Uncertainty
  • 10.8.2.1 Type B Uncertainty
  • 10.8.2.2 Type A Measurement Uncertainty
  • 10.8.2.3 Drift Uncertainty
  • 10.8.2.4 Expanded Uncertainty
  • 10.9 Calibration Interval Analysis
  • 10.10 Summary
  • 10.11 Related Reading
  • 10.12 Exercises
  • References
  • Chapter 11: Special Topics in Metrology
  • 11.1 Introduction
  • 11.2 Statistical Process Control (SPC)
  • 11.2.1 Case Study: Battery Tester Uncertainty and Monitoring Via SPC
  • 11.2.2 Discussion
  • 11.3 Binary Measurement Systems (BMS)
  • 11.3.1 BMS Overview
  • 11.3.2 BMS Case Study Introduced
  • 11.3.3 Evaluation of a BMS
  • 11.3.3.1 Within-Operator Agreement
  • 11.3.3.2 Between-Operator Agreement
  • 11.3.3.3 Assessing BMS Correctness
  • 11.3.4 Sample Sizes for a BMS Study
  • 11.4 Measurement System Analysis with Destructive Testing
  • 11.5 Sample Size and Allocation of Samples in Metrology Experiments
  • 11.6 Summary of Sample Size Recommendations
  • 11.7 Bayesian Analysis in Metrology
  • 11.8 Related Reading
  • 11.9 Exercises
  • References
  • Appendix A: Acronyms and Abbreviations
  • Appendix B: Guidelines for Valid Measurements
  • Related Reading: Electrical Measurements
  • Related Reading: Time and Frequency Measurements
  • Related Reading: Physical Measurements
  • Related Reading: Temperature Measurement
  • Related Reading: Radiation
  • Related Reading: General Measurement and Instrumentation Techniques