Introduction to Statistics in Metrology
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2020
|
Schlagworte: | |
Online-Zugang: | FHD01 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Inhaltsangabe:
- Intro
- Preface
- Contents
- About the Authors
- Chapter 1: Introduction
- 1.1 Measurement Uncertainty: Why Do We Care?
- 1.2 The History of Measurement
- 1.3 Measurement Science and Technological Development
- 1.4 Allegations of Deflated Footballs (''Deflategate'')
- 1.5 Fatality Rates During a Pandemic
- 1.6 Summary
- 1.7 Related Reading
- References
- Chapter 2: Basic Measurement Concepts
- 2.1 Introduction
- 2.2 Measurement Terminology
- 2.2.1 General Measurement Terminology
- 2.2.1.1 Measurand
- 2.2.1.2 True Value (True Value of a Quantity)
- 2.2.1.3 Measurement Accuracy
- 2.2.1.4 Measurement Precision
- 2.2.1.5 Resolution
- 2.2.1.6 Measurement Repeatability
- 2.2.1.7 Measurement Reproducibility
- 2.2.1.8 Independence of Measurements
- 2.2.2 Error Approach Terminology
- 2.2.2.1 Measurement Error
- 2.2.2.2 Systematic Measurement Error
- 2.2.2.3 Random Measurement Error
- 2.2.3 Uncertainty Approach Terminology
- 2.2.3.1 Measurement Uncertainty
- 2.2.3.2 Level of Confidence (Coverage Probability)
- 2.2.3.3 Coverage Interval
- 2.2.3.4 Measurement Model
- 2.2.4 Terminology of Calibration
- 2.2.4.1 Measuring and Test Equipment (M&
- TE)
- 2.2.4.2 Metrological Traceability
- 2.2.4.3 Calibration
- 2.2.4.4 Tolerance Test
- 2.2.4.5 Certification Uncertainty
- 2.3 Types of Measurements
- 2.3.1 Physical Measurements
- 2.3.2 Electrical Measurements
- 2.3.3 Other Types of Measurements
- 2.4 Sources of Uncertainty
- 2.4.1 Evaluating Sources of Uncertainty
- 2.5 Summary
- 2.6 Related Reading
- 2.7 Exercises
- References
- Chapter 3: The International System of Units, Traceability, and Calibration
- 3.1 History of the SI and Base Units
- 3.1.1 SI Constants
- 3.1.2 Time: Second (s)
- 3.1.3 Length: Meter (m)
- 3.1.4 Mass: Kilogram (kg)
- 3.1.5 Electric Current: Ampere (A)
- 3.1.6 Temperature: Kelvin (K)
- 3.1.7 Quantity of Substance: Mole (mol)
- 3.1.8 Luminous Intensity: Candela (cd)
- 3.2 Derived Units
- 3.3 Unit Realizations
- 3.3.1 Gauge Block Interferometer
- 3.3.2 Josephson Volt
- 3.4 Advancements in Unit Definitions
- 3.4.1 Kibble (Watt) Balance
- 3.4.2 Intrinsic Pressure Standard
- 3.5 Metrological Traceability
- 3.6 Measurement Standards
- 3.6.1 Certified Reference Materials
- 3.6.2 Check Standards
- 3.7 Calibration
- 3.7.1 The Calibration Cycle
- 3.7.2 Legal Aspects of Calibration
- 3.7.3 Technical Aspects of Calibration
- 3.7.4 Calibration Policies and Requirements
- 3.7.4.1 ISO 17025
- 3.7.4.2 ANSI Z540.1 and ANSI/NCSL Z540.3:2006
- 3.8 Summary
- 3.9 Related Reading
- 3.10 Exercises
- References
- Chapter 4: Introduction to Statistics and Probability
- 4.1 Introduction
- 4.2 Types of Data
- 4.3 Exploratory Data Analysis
- 4.3.1 Calculating Summary Statistics
- 4.3.1.1 Summary Statistics for Continuous Data
- 4.3.1.2 Summary Statistics for Discrete Data
- 4.3.2 Graphical Displays of Data
- 4.3.2.1 Graphical Displays for Continuous Data
- 4.3.2.2 Graphical Displays for Discrete Data
- 4.4 Probability Distributions
- 4.4.1 Identification of Probability Distributions
- 4.4.1.1 Continuous Distributions
- 4.4.1.2 Discrete Distributions
- 4.4.2 Estimating Distribution Parameters
- 4.4.3 Assessing Distributional Fit
- 4.5 Related Reading
- 4.6 Exercises
- References
- Chapter 5: Measurement Uncertainty in Decision Making
- 5.1 Introduction
- 5.2 Measurement Uncertainty and Risk
- 5.2.1 Measurement Uncertainty and Risk in Manufacturing
- 5.2.1.1 Test Uncertainty Ratio
- 5.2.1.2 Measurement Decisions
- 5.2.1.3 False Accept and False Reject Risks
- 5.2.1.4 Guardbanding
- 5.2.1.5 Risk with Biased Measurements
- 5.2.2 Measurement Uncertainty and Risk in Calibration
- 5.2.2.1 Decision Rules in Calibration
- 5.3 Summary
- 5.4 Related Reading
- 5.5 Exercises
- References
- Chapter 6: The Measurement Model and Uncertainty
- 6.1 Introduction
- 6.2 Uncertainty Analysis Framework
- 6.2.1 Standard Uncertainty
- 6.2.2 Type A Uncertainty Evaluation
- 6.2.3 Type B Uncertainty Evaluation
- 6.2.4 Combined Standard Uncertainty
- 6.2.5 Confidence Level and Expanded Uncertainty
- 6.3 Direct Measurements and the Basic Measurement Model
- 6.3.1 Case Study: Voltage Measurement
- 6.3.2 Discussion
- 6.4 Indirect Measurements and the Indirect Measurement Model
- 6.4.1 Case Study: Neutron Yield Measurement
- 6.4.2 Discussion
- 6.5 Related Reading
- 6.6 Exercises
- References
- Chapter 7: Analytical Methods for the Propagation of Uncertainties
- 7.1 Introduction
- 7.2 Mathematical Basis
- 7.3 The Simple Case: First-Order Terms with Uncorrelated Inputs
- 7.3.1 Measurement Examples
- 7.4 First-Order Terms with Correlated Inputs
- 7.4.1 Covariance, Correlation, and Effect on Uncertainty
- 7.4.2 Measurement Examples
- 7.5 Higher-Order Terms with Uncorrelated Inputs
- 7.5.1 Measurement Examples
- 7.6 Multiple Output Quantities
- 7.7 Limitations of the Analytical Approach
- 7.8 Related Reading
- 7.9 Exercises
- References
- Chapter 8: Monte Carlo Methods for the Propagation of Uncertainties
- 8.1 Introduction to Monte Carlo Methods
- 8.1.1 Random Sampling Techniques and Random Number Generation
- 8.1.1.1 Sampling from Normal and Non-Normal Distributions
- 8.1.1.2 Generating Correlated Random Samples (Normal Distribution)
- 8.1.2 Generation of Probability Density Functions Using Random Data
- 8.1.3 Computational Approaches
- 8.1.3.1 Linear Congruential Generator
- 8.1.3.2 Better PRNG Algorithms
- 8.2 Standard Monte Carlo for Uncertainty Propagation
- 8.2.1 Monte Carlo Techniques
- 8.2.1.1 Case Study: Calculating Density
- 8.2.1.2 Sensitivity Coefficients
- 8.2.1.3 Convergence Plots and Adaptive Sampling
- 8.3 Comparison to the GUM
- 8.3.1 Quantitative GUM Validity Test
- 8.4 Monte Carlo Case Studies
- 8.4.1 Case Study: Neutron Yield Measurement
- 8.4.2 Case Study: RC Circuit
- 8.5 Summary
- 8.6 Related Reading
- 8.7 Exercises
- References
- Chapter 9: Design of Experiments in Metrology
- 9.1 Introduction
- 9.2 Factorial Experiments in Metrology
- 9.2.1 Defining the Measurand and Objective of the Experiment
- 9.2.2 Selecting Factors to Incorporate in the Experiment
- 9.2.3 Selecting Factor Levels and Design Pattern
- 9.2.4 Analysis of CMM Errors via Design of Experiments (24 Full Factorial)
- 9.2.5 Finite Element Method (FEM) Uncertainty Analysis via Design of Experiments (27-3 Fractional Factorial)
- 9.2.6 Summary of Factorial DOEx Method
- 9.3 ANOVA Models in Metrology
- 9.3.1 Random Effects Models
- 9.3.2 Mixed Effects Models
- 9.3.3 Underlying ANOVA Assumptions
- 9.3.4 Gauge R&
- R Study (Random Effects Model)
- 9.3.5 Voltage Standard Uncertainty Analysis (Mixed Effects Model)
- 9.3.6 Summary of ANOVA Method
- 9.4 Related Reading
- 9.5 Exercises
- References
- Chapter 10: Determining Uncertainties in Fitted Curves
- 10.1 The Purpose of Fitting Curves to Experimental Data
- 10.1.1 Resistance vs. Temperature Data
- 10.1.2 Considerations When Fitting Models to Data
- 10.2 Methods for Fitting Curves to Experimental Data
- 10.2.1 Linear Least Squares
- 10.2.2 Uncertainty in Fitting Parameters
- 10.2.3 Weighted Least Squares: Non-constant u(y)
- 10.2.4 Weighted Least Squares: Uncertainty in Both x and y
- 10.3 Uncertainty of a Regression Line
- 10.3.1 Uncertainty of Fitting Parameters
- 10.3.2 Confidence Bands
- 10.3.3 Prediction Bands
- 10.4 How Good Is the Model?
- 10.4.1 Residual Analysis
- 10.4.2 Slope Test
- 10.4.3 Quantitative Residual Analysis
- 10.5 Uncertainty in Nonlinear Regression
- 10.5.1 Nonlinear Least Squares
- 10.5.2 Orthogonal Distance Regression
- 10.5.3 Confidence and Prediction Bands in Nonlinear Regression
- 10.6 Using Monte Carlo for Evaluating Uncertainties in Curve Fitting
- 10.6.1 Monte Carlo Approach
- 10.6.2 Markov-Chain Monte Carlo Approach
- 10.7 Case Study: Contact Resistance
- 10.8 Drift and Predicting Future Values
- 10.8.1 Uncertainty During Use
- 10.8.2 Validating Drift Uncertainty
- 10.8.2.1 Type B Uncertainty
- 10.8.2.2 Type A Measurement Uncertainty
- 10.8.2.3 Drift Uncertainty
- 10.8.2.4 Expanded Uncertainty
- 10.9 Calibration Interval Analysis
- 10.10 Summary
- 10.11 Related Reading
- 10.12 Exercises
- References
- Chapter 11: Special Topics in Metrology
- 11.1 Introduction
- 11.2 Statistical Process Control (SPC)
- 11.2.1 Case Study: Battery Tester Uncertainty and Monitoring Via SPC
- 11.2.2 Discussion
- 11.3 Binary Measurement Systems (BMS)
- 11.3.1 BMS Overview
- 11.3.2 BMS Case Study Introduced
- 11.3.3 Evaluation of a BMS
- 11.3.3.1 Within-Operator Agreement
- 11.3.3.2 Between-Operator Agreement
- 11.3.3.3 Assessing BMS Correctness
- 11.3.4 Sample Sizes for a BMS Study
- 11.4 Measurement System Analysis with Destructive Testing
- 11.5 Sample Size and Allocation of Samples in Metrology Experiments
- 11.6 Summary of Sample Size Recommendations
- 11.7 Bayesian Analysis in Metrology
- 11.8 Related Reading
- 11.9 Exercises
- References
- Appendix A: Acronyms and Abbreviations
- Appendix B: Guidelines for Valid Measurements
- Related Reading: Electrical Measurements
- Related Reading: Time and Frequency Measurements
- Related Reading: Physical Measurements
- Related Reading: Temperature Measurement
- Related Reading: Radiation
- Related Reading: General Measurement and Instrumentation Techniques