Fractional Dynamics

The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cattani, Carlo (VerfasserIn), Srivastava, Hari M. (VerfasserIn), Yang, Xiao-Jun (VerfasserIn)
Format: Elektronisch Software E-Book
Sprache:English
Schlagworte:
Online-Zugang:kostenfrei
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000 c 4500
001 BV048278457
003 DE-604
005 00000000000000.0
007 cu|uuu---uuuuu
008 220610s2015 xx |||| ||u| ||||||eng d
020 |a 3110470713  |9 3110470713 
020 |a 3110472082  |9 3110472082 
020 |a 3110472090  |9 3110472090 
020 |a 9783110470710  |q (electronic bk.)  |9 9783110470710 
020 |a 9783110472080  |9 9783110472080 
020 |a 9783110472097  |9 9783110472097 
035 |a (OCoLC)945783381 
035 |a (DE-599)BVBBV048278457 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-355 
100 1 |a Cattani, Carlo  |e Verfasser  |4 aut 
245 1 0 |a Fractional Dynamics 
264 0 |b De Gruyter  |c 2015 
300 |a 1 Online-Ressource (1 electronic resource (392 Seiten)) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
505 8 |a Fractional Dynamics -- Local Fractional Calculus on Shannon Wavelet Basis -- 1 Introduction -- 2 Preliminary Remarks -- 2.1 Shannon Wavelets in the Fourier Domain -- 2.2 Properties of the Shannon Wavelet -- 3 Connection Coefficients -- 3.1 Properties of Connection Coefficients -- 4 Differential Properties of L2(R)-functions in Shannon Wavelet Basis -- 4.1 Taylor Series -- 4.2 Functional Equations -- 4.3 Error of the Approximation by Connection Coefficients -- 5 Fractional Derivatives of the Wavelet Basis -- 5.1 Complex Shannon Wavelets on Fractal Sets of Dimension -- 5.2 Local Fractional Derivatives of Complex Functions -- 5.3 Example: Fractional Derivative of a Gaussian on a Fractal Set -- Discretely and Continuously Distributed Dynamical Systems with Fractional Nonlocality -- 1 Introduction -- 2 Lattice with Long-range Properties -- 3 Lattice Fractional Nonlinear Equations -- 4 Continuum Fractional Derivatives of the Riesz Type -- 5 From Lattice Equations to Continuum Equations -- 6 Fractional Continuum Nonlinear Equations -- 7 Conclusion -- Temporal Patterns in Earthquake Data-series -- 1 Introduction -- 2 Dataset -- 3 Mathematical Tools -- 3.1 Hierarchichal Clustering -- 3.2 Multidimensional Scaling -- 4 Data Analysys and Pattern Visualization -- 4.1 Hierarchical Clustering Analysis and Comparison -- 4.2 MDS Analysis and Visualization -- 5 Conclusions -- An Integral Transform arising from Fractional Calculus -- 1 Integral Transform R -- 2 Dirac's -function and R -- 3 Space of Generalized Functions Spanned by a(n) -- 4 Extended Borel Transform -- 5 The Transform R and Extended Borel Transform -- 6 Application of R to Fractional Differential Equations -- Approximate Solutions to Time-fractional Models by Integral-balance Approach -- 1 Introduction -- 1.1 Subdiffusion -- 1.2 Time-Fractional Derivatives in Rheology 
505 8 |a 1.1 Modelling Epidemic of Whooping Cough with Concept of Fractional Order Derivative -- 2 Conclusion -- On Numerical Methods for Fractional Differential Equation on a Semi-infinite Interval -- 1 Introduction -- 2 Preliminaries and Notations -- 3 Generalized Laguerre Polynomials/Functions -- 3.1 Generalized Laguerre Polynomials -- 3.2 Fractional-order Generalized Laguerre Functions -- 3.3 Fractional-order Generalized Laguerre-Gauss-type Quadratures -- 4 Operational Matrices of Caputo Fractional Derivatives -- 4.1 GLOM of Fractional Derivatives -- 4.2 FGLOM of Fractional Derivatives -- 5 Operational Matrices of Riemann-Liouville Fractional Integrals -- 5.1 GLOM of Fractional Integration -- 5.2 FGLOM of Fractional Integration -- 6 Spectral Methods for FDEs -- 6.1 Generalized Laguerre Tau Operational Matrix Formulation Method -- 6.2 FGLFs Tau Operational Matrix Formulation Method -- 6.3 Tau Method Based on FGLOM of Fractional Integration -- 6.4 Collocation Method for Nonlinear FDEs -- 6.5 Collocation Method for System of FDEs -- 7 Applications and Numerical Results -- From Leibniz's Notation for Derivative to the Fractal Derivative, Fractional Derivative and Application in Mongolian Yurt -- 1 Introduction -- 2 Fractal Derivative -- 3 On Definitions of Fractional Derivatives -- 3.1 Variational Iteration Method -- 3.2 Definitions on Fractional Derivatives -- 4 Mongolian Yurt, Biomimic Design of Cocoon and its Evolution -- 4.1 Pupa-cocoon System -- 4.2 Fractal Hierarchy and Local Fractional Model -- 5 Conclusions -- Cantor-type spherical-coordinate Method for Differential Equations within Local Fractional Derivatives -- 1 Introduction -- 2 Mathematical Tools -- 3 Cantor-type Spherical-coordinate Method -- 4 Examples -- 5 Conclusions -- Approximate Methods for Local Fractional Differential Equations -- 1 Introduction 
505 8 |a 1.3 Common Methods of Solutions Involving Time-Fractional Derivatives -- 2 Preliminaries Necessary Mathematical Background -- 2.1 Time-Fractional Integral and Derivatives -- 2.2 Integral-Balance Method -- 3 Introductory Examples -- 3.1 Fading Memory in the Diffusion Term -- 3.2 Example 1: Diffusion of Momentum with Elastic Effects Only -- 4 Examples Involving Time-fractional Derivatives -- 4.1 Example 2: Time-Fractional Subdiffusion Equation -- 4.2 Approximate Parabolic Profiles -- 4.3 Calibration of the Profile Exponent and Results Thereof -- 4.4 Example 3: Subdiffusion Equation: A Solution by a Weak Approximate Profile -- 5 Transient Flows of Viscoelastic Fluids -- 5.1 Example 4: Stokes' First Problem of a Second Grade Fractional (viscoelastic) Fluid -- 5.2 Example 5: Transient Flow of a Generalized Second Grade Fluid Due to a Constant Surface Shear Stress -- 6 Final Comments and Results Outlines -- A Study of Sequential Fractional q-integro-difference Equations with Perturbed Anti-periodic Boundary Conditions -- 1 Introduction -- 2 Preliminaries -- 3 Main Results -- 4 Example -- Fractional Diffusion Equation, Sorption and Reaction Processes on a Surface -- 1 Introduction -- 2 Diffusion and Reaction -- 3 Discussion and Conclusions -- Fractional Order Models for Electrochemical Devices -- 1 Introduction -- 2 Fractional Modeling of Supercapacitors -- 3 Fractional Modeling of Lead Acid Batteries with Application to State of Charge and State of Health Estimation -- 4 Fractional Modeling of Lithium-ion Batteries with Application to State of Charge -- 5 Conclusion -- Results for an Electrolytic Cell Containing Two Groups of Ions: PNP -- Model and Fractional Approach -- 1 Introduction -- 2 Fractional Diffusion and Impedance -- 3 Conclusions -- Application of Fractional Calculus to Epidemiology -- 1 Introduction 
505 8 |a 2 The Theory of Local Fractional Calculus -- 3 Analysis of the Methods -- 3.1 The local fractional variational iteration method -- 3.2 The local fractional Adomian decomposition method -- 3.3 The local fractional series expansion method -- 4 Applications to Solve Partial Differential Equations Involving Local Fractional Derivatives -- 4.1 Solving the linear Boussinesq equation occurring in fractal long water waves with local fractional variational iteration method -- 4.2 Solving the equation of the fractal motion of a long string by the local fractional Adomian decomposition method -- 4.3 Solving partial differential equations arising from the fractal transverse vibration of a beam with local fractional series expansion method -- 5 Conclusions -- Numerical Solutions for ODEs with Local Fractional Derivative -- 1 Introduction -- 2 The Generalized Local Fractional Taylor Theorems -- 3 Extended DTM -- 4 Four Illustrative Examples -- 5 Conclusions -- Local Fractional Calculus Application to Differential Equations Arising in Fractal Heat Transfer -- 1 Introduction -- 2 Theory of Local Fractional Vector Calculus -- 3 The Local Fractional Heat Equations Arising in Fractal Heat Transfer -- 3.1 The Non-homogeneous Heat Problems Arising in Fractal Heat Flow -- 3.2 The Homogeneous Heat Problems Arising in Fractal Heat Flow -- 4 Local Fractional Poisson Problems Arising in Fractal Heat Flow -- 5 Local Fractional Laplace Problems Arising From Fractal Heat Flow -- 6 The 2D Partial Differential Equations of Fractal Heat Transfer in Cantor-type Circle Coordinate Systems -- 7 Conclusions -- Local Fractional Laplace Decomposition Method for Solving Linear Partial Differential Equations with Local Fractional Derivative -- 1 Introduction -- 2 Mathematical Fundamentals -- 3 Local Fractional Laplace Decomposition Method -- 4 Illustrative Examples -- 5 Conclusions 
505 8 |a Calculus on Fractals -- 1 Introduction -- 2 Calculus on Fractal Subset of Real-Line -- 2.1 Staircase Functions -- 2.2 F-Limit and F-Continuity -- 2.3 F-Integration -- 2.4 F-Differentiation -- 2.5 First Fundamental Theorem of F-calculus -- 2.6 Second Fundamental Theorem of F-calculus -- 2.7 Taylor Series on Fractal Sets -- 2.8 Integration by Parts in F-calculus -- 3 Fractal F-differential Equation -- 4 Calculus on Fractal Curves -- 4.1 Staircase Function on Fractal Curves -- 4.2 F-Limit and F-Continuity on Fractal Curves -- 4.3 F-integration on Fractal Curves -- 4.4 F-Differentiation on Fractal Curves -- 4.5 First Fundamental Theorem on Fractal Curve -- 4.6 Second Fundamental Theorem on Fractal Curve -- 5 Gradient, Divergent, Curl and Laplacian on Fractal Curves -- 5.1 Gradient on Fractal Curves -- 5.2 Divergent on Fractal Curves -- 5.3 Laplacian on Fractal Curves -- 6 Function Spaces in F-calculus -- 6.1 Spaces of F-differentiable Functions -- 6.2 Spaces of F-Integrable Functions -- 7 Calculus on Fractal Subsets of R3 -- 7.1 Integral Staircase for Fractal Subsets of R3 -- 7.2 F-integration on Fractal Subset of R3 -- 7.3 F-differentiation on Fractal Subsets of R3 -- 8 F-differential Form -- 8.1 F-Fractional 1-forms -- 8.2 F- Fractional Exactness -- 8.3 F-Fractional 2-forms -- 9 Gauge Integral and F-calculus -- 10 Application of F-calculus -- 10.1 Lagrangian and Hamiltonian Mechanics on Fractals -- 11 Quantum Mechanics on Fractal Curve -- 11.1 Generalized Feynman Path Integral Method -- 12 Continuity Equation and Probability on Fractal -- 13 Newtonian Mechanics on Fractals -- 13.1 Kinematics of Motion -- 13.2 Dynamics of Motion -- 14 Work and Energy Theorem on Fractals -- 15 Langevin F-Equation on Fractals -- 16 Maxwell's Equation on Fractals 
506 0 |a Open Access  |5 EbpS 
520 3 |a The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science 
546 |a English 
650 4 |a Mathematics 
650 4 |a Physics 
650 4 |a Mathematics 
650 4 |a Physics 
653 6 |a Electronic books 
700 1 |a Srivastava, Hari M.  |e Verfasser  |4 aut 
700 1 |a Yang, Xiao-Jun  |e Verfasser  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Cattani, Carlo  |t Fractional Dynamics  |d Warschau/Berlin : De Gruyter, ©2016  |z 9783110472080 
856 4 |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1805188  |x Verlag  |z kostenfrei  |3 Volltext 
912 |a ZDB-4-EOAC 
943 1 |a oai:aleph.bib-bvb.de:BVB01-033658623 

Datensatz im Suchindex

DE-BY-UBR_katkey 6561346
_version_ 1822706858691919872
any_adam_object
author Cattani, Carlo
Srivastava, Hari M.
Yang, Xiao-Jun
author_facet Cattani, Carlo
Srivastava, Hari M.
Yang, Xiao-Jun
author_role aut
aut
aut
author_sort Cattani, Carlo
author_variant c c cc
h m s hm hms
x j y xjy
building Verbundindex
bvnumber BV048278457
collection ZDB-4-EOAC
contents Fractional Dynamics -- Local Fractional Calculus on Shannon Wavelet Basis -- 1 Introduction -- 2 Preliminary Remarks -- 2.1 Shannon Wavelets in the Fourier Domain -- 2.2 Properties of the Shannon Wavelet -- 3 Connection Coefficients -- 3.1 Properties of Connection Coefficients -- 4 Differential Properties of L2(R)-functions in Shannon Wavelet Basis -- 4.1 Taylor Series -- 4.2 Functional Equations -- 4.3 Error of the Approximation by Connection Coefficients -- 5 Fractional Derivatives of the Wavelet Basis -- 5.1 Complex Shannon Wavelets on Fractal Sets of Dimension -- 5.2 Local Fractional Derivatives of Complex Functions -- 5.3 Example: Fractional Derivative of a Gaussian on a Fractal Set -- Discretely and Continuously Distributed Dynamical Systems with Fractional Nonlocality -- 1 Introduction -- 2 Lattice with Long-range Properties -- 3 Lattice Fractional Nonlinear Equations -- 4 Continuum Fractional Derivatives of the Riesz Type -- 5 From Lattice Equations to Continuum Equations -- 6 Fractional Continuum Nonlinear Equations -- 7 Conclusion -- Temporal Patterns in Earthquake Data-series -- 1 Introduction -- 2 Dataset -- 3 Mathematical Tools -- 3.1 Hierarchichal Clustering -- 3.2 Multidimensional Scaling -- 4 Data Analysys and Pattern Visualization -- 4.1 Hierarchical Clustering Analysis and Comparison -- 4.2 MDS Analysis and Visualization -- 5 Conclusions -- An Integral Transform arising from Fractional Calculus -- 1 Integral Transform R -- 2 Dirac's -function and R -- 3 Space of Generalized Functions Spanned by a(n) -- 4 Extended Borel Transform -- 5 The Transform R and Extended Borel Transform -- 6 Application of R to Fractional Differential Equations -- Approximate Solutions to Time-fractional Models by Integral-balance Approach -- 1 Introduction -- 1.1 Subdiffusion -- 1.2 Time-Fractional Derivatives in Rheology
1.1 Modelling Epidemic of Whooping Cough with Concept of Fractional Order Derivative -- 2 Conclusion -- On Numerical Methods for Fractional Differential Equation on a Semi-infinite Interval -- 1 Introduction -- 2 Preliminaries and Notations -- 3 Generalized Laguerre Polynomials/Functions -- 3.1 Generalized Laguerre Polynomials -- 3.2 Fractional-order Generalized Laguerre Functions -- 3.3 Fractional-order Generalized Laguerre-Gauss-type Quadratures -- 4 Operational Matrices of Caputo Fractional Derivatives -- 4.1 GLOM of Fractional Derivatives -- 4.2 FGLOM of Fractional Derivatives -- 5 Operational Matrices of Riemann-Liouville Fractional Integrals -- 5.1 GLOM of Fractional Integration -- 5.2 FGLOM of Fractional Integration -- 6 Spectral Methods for FDEs -- 6.1 Generalized Laguerre Tau Operational Matrix Formulation Method -- 6.2 FGLFs Tau Operational Matrix Formulation Method -- 6.3 Tau Method Based on FGLOM of Fractional Integration -- 6.4 Collocation Method for Nonlinear FDEs -- 6.5 Collocation Method for System of FDEs -- 7 Applications and Numerical Results -- From Leibniz's Notation for Derivative to the Fractal Derivative, Fractional Derivative and Application in Mongolian Yurt -- 1 Introduction -- 2 Fractal Derivative -- 3 On Definitions of Fractional Derivatives -- 3.1 Variational Iteration Method -- 3.2 Definitions on Fractional Derivatives -- 4 Mongolian Yurt, Biomimic Design of Cocoon and its Evolution -- 4.1 Pupa-cocoon System -- 4.2 Fractal Hierarchy and Local Fractional Model -- 5 Conclusions -- Cantor-type spherical-coordinate Method for Differential Equations within Local Fractional Derivatives -- 1 Introduction -- 2 Mathematical Tools -- 3 Cantor-type Spherical-coordinate Method -- 4 Examples -- 5 Conclusions -- Approximate Methods for Local Fractional Differential Equations -- 1 Introduction
1.3 Common Methods of Solutions Involving Time-Fractional Derivatives -- 2 Preliminaries Necessary Mathematical Background -- 2.1 Time-Fractional Integral and Derivatives -- 2.2 Integral-Balance Method -- 3 Introductory Examples -- 3.1 Fading Memory in the Diffusion Term -- 3.2 Example 1: Diffusion of Momentum with Elastic Effects Only -- 4 Examples Involving Time-fractional Derivatives -- 4.1 Example 2: Time-Fractional Subdiffusion Equation -- 4.2 Approximate Parabolic Profiles -- 4.3 Calibration of the Profile Exponent and Results Thereof -- 4.4 Example 3: Subdiffusion Equation: A Solution by a Weak Approximate Profile -- 5 Transient Flows of Viscoelastic Fluids -- 5.1 Example 4: Stokes' First Problem of a Second Grade Fractional (viscoelastic) Fluid -- 5.2 Example 5: Transient Flow of a Generalized Second Grade Fluid Due to a Constant Surface Shear Stress -- 6 Final Comments and Results Outlines -- A Study of Sequential Fractional q-integro-difference Equations with Perturbed Anti-periodic Boundary Conditions -- 1 Introduction -- 2 Preliminaries -- 3 Main Results -- 4 Example -- Fractional Diffusion Equation, Sorption and Reaction Processes on a Surface -- 1 Introduction -- 2 Diffusion and Reaction -- 3 Discussion and Conclusions -- Fractional Order Models for Electrochemical Devices -- 1 Introduction -- 2 Fractional Modeling of Supercapacitors -- 3 Fractional Modeling of Lead Acid Batteries with Application to State of Charge and State of Health Estimation -- 4 Fractional Modeling of Lithium-ion Batteries with Application to State of Charge -- 5 Conclusion -- Results for an Electrolytic Cell Containing Two Groups of Ions: PNP -- Model and Fractional Approach -- 1 Introduction -- 2 Fractional Diffusion and Impedance -- 3 Conclusions -- Application of Fractional Calculus to Epidemiology -- 1 Introduction
2 The Theory of Local Fractional Calculus -- 3 Analysis of the Methods -- 3.1 The local fractional variational iteration method -- 3.2 The local fractional Adomian decomposition method -- 3.3 The local fractional series expansion method -- 4 Applications to Solve Partial Differential Equations Involving Local Fractional Derivatives -- 4.1 Solving the linear Boussinesq equation occurring in fractal long water waves with local fractional variational iteration method -- 4.2 Solving the equation of the fractal motion of a long string by the local fractional Adomian decomposition method -- 4.3 Solving partial differential equations arising from the fractal transverse vibration of a beam with local fractional series expansion method -- 5 Conclusions -- Numerical Solutions for ODEs with Local Fractional Derivative -- 1 Introduction -- 2 The Generalized Local Fractional Taylor Theorems -- 3 Extended DTM -- 4 Four Illustrative Examples -- 5 Conclusions -- Local Fractional Calculus Application to Differential Equations Arising in Fractal Heat Transfer -- 1 Introduction -- 2 Theory of Local Fractional Vector Calculus -- 3 The Local Fractional Heat Equations Arising in Fractal Heat Transfer -- 3.1 The Non-homogeneous Heat Problems Arising in Fractal Heat Flow -- 3.2 The Homogeneous Heat Problems Arising in Fractal Heat Flow -- 4 Local Fractional Poisson Problems Arising in Fractal Heat Flow -- 5 Local Fractional Laplace Problems Arising From Fractal Heat Flow -- 6 The 2D Partial Differential Equations of Fractal Heat Transfer in Cantor-type Circle Coordinate Systems -- 7 Conclusions -- Local Fractional Laplace Decomposition Method for Solving Linear Partial Differential Equations with Local Fractional Derivative -- 1 Introduction -- 2 Mathematical Fundamentals -- 3 Local Fractional Laplace Decomposition Method -- 4 Illustrative Examples -- 5 Conclusions
Calculus on Fractals -- 1 Introduction -- 2 Calculus on Fractal Subset of Real-Line -- 2.1 Staircase Functions -- 2.2 F-Limit and F-Continuity -- 2.3 F-Integration -- 2.4 F-Differentiation -- 2.5 First Fundamental Theorem of F-calculus -- 2.6 Second Fundamental Theorem of F-calculus -- 2.7 Taylor Series on Fractal Sets -- 2.8 Integration by Parts in F-calculus -- 3 Fractal F-differential Equation -- 4 Calculus on Fractal Curves -- 4.1 Staircase Function on Fractal Curves -- 4.2 F-Limit and F-Continuity on Fractal Curves -- 4.3 F-integration on Fractal Curves -- 4.4 F-Differentiation on Fractal Curves -- 4.5 First Fundamental Theorem on Fractal Curve -- 4.6 Second Fundamental Theorem on Fractal Curve -- 5 Gradient, Divergent, Curl and Laplacian on Fractal Curves -- 5.1 Gradient on Fractal Curves -- 5.2 Divergent on Fractal Curves -- 5.3 Laplacian on Fractal Curves -- 6 Function Spaces in F-calculus -- 6.1 Spaces of F-differentiable Functions -- 6.2 Spaces of F-Integrable Functions -- 7 Calculus on Fractal Subsets of R3 -- 7.1 Integral Staircase for Fractal Subsets of R3 -- 7.2 F-integration on Fractal Subset of R3 -- 7.3 F-differentiation on Fractal Subsets of R3 -- 8 F-differential Form -- 8.1 F-Fractional 1-forms -- 8.2 F- Fractional Exactness -- 8.3 F-Fractional 2-forms -- 9 Gauge Integral and F-calculus -- 10 Application of F-calculus -- 10.1 Lagrangian and Hamiltonian Mechanics on Fractals -- 11 Quantum Mechanics on Fractal Curve -- 11.1 Generalized Feynman Path Integral Method -- 12 Continuity Equation and Probability on Fractal -- 13 Newtonian Mechanics on Fractals -- 13.1 Kinematics of Motion -- 13.2 Dynamics of Motion -- 14 Work and Energy Theorem on Fractals -- 15 Langevin F-Equation on Fractals -- 16 Maxwell's Equation on Fractals
ctrlnum (OCoLC)945783381
(DE-599)BVBBV048278457
format Electronic
Software
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11516nmm a2200529 c 4500</leader><controlfield tag="001">BV048278457</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cu|uuu---uuuuu</controlfield><controlfield tag="008">220610s2015 xx |||| ||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110470713</subfield><subfield code="9">3110470713</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110472082</subfield><subfield code="9">3110472082</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110472090</subfield><subfield code="9">3110472090</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110470710</subfield><subfield code="q">(electronic bk.)</subfield><subfield code="9">9783110470710</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110472080</subfield><subfield code="9">9783110472080</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110472097</subfield><subfield code="9">9783110472097</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)945783381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048278457</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cattani, Carlo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractional Dynamics</subfield></datafield><datafield tag="264" ind1=" " ind2="0"><subfield code="b">De Gruyter</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 electronic resource (392 Seiten))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Fractional Dynamics -- Local Fractional Calculus on Shannon Wavelet Basis -- 1 Introduction -- 2 Preliminary Remarks -- 2.1 Shannon Wavelets in the Fourier Domain -- 2.2 Properties of the Shannon Wavelet -- 3 Connection Coefficients -- 3.1 Properties of Connection Coefficients -- 4 Differential Properties of L2(R)-functions in Shannon Wavelet Basis -- 4.1 Taylor Series -- 4.2 Functional Equations -- 4.3 Error of the Approximation by Connection Coefficients -- 5 Fractional Derivatives of the Wavelet Basis -- 5.1 Complex Shannon Wavelets on Fractal Sets of Dimension -- 5.2 Local Fractional Derivatives of Complex Functions -- 5.3 Example: Fractional Derivative of a Gaussian on a Fractal Set -- Discretely and Continuously Distributed Dynamical Systems with Fractional Nonlocality -- 1 Introduction -- 2 Lattice with Long-range Properties -- 3 Lattice Fractional Nonlinear Equations -- 4 Continuum Fractional Derivatives of the Riesz Type -- 5 From Lattice Equations to Continuum Equations -- 6 Fractional Continuum Nonlinear Equations -- 7 Conclusion -- Temporal Patterns in Earthquake Data-series -- 1 Introduction -- 2 Dataset -- 3 Mathematical Tools -- 3.1 Hierarchichal Clustering -- 3.2 Multidimensional Scaling -- 4 Data Analysys and Pattern Visualization -- 4.1 Hierarchical Clustering Analysis and Comparison -- 4.2 MDS Analysis and Visualization -- 5 Conclusions -- An Integral Transform arising from Fractional Calculus -- 1 Integral Transform R -- 2 Dirac's -function and R -- 3 Space of Generalized Functions Spanned by a(n) -- 4 Extended Borel Transform -- 5 The Transform R and Extended Borel Transform -- 6 Application of R to Fractional Differential Equations -- Approximate Solutions to Time-fractional Models by Integral-balance Approach -- 1 Introduction -- 1.1 Subdiffusion -- 1.2 Time-Fractional Derivatives in Rheology</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.1 Modelling Epidemic of Whooping Cough with Concept of Fractional Order Derivative -- 2 Conclusion -- On Numerical Methods for Fractional Differential Equation on a Semi-infinite Interval -- 1 Introduction -- 2 Preliminaries and Notations -- 3 Generalized Laguerre Polynomials/Functions -- 3.1 Generalized Laguerre Polynomials -- 3.2 Fractional-order Generalized Laguerre Functions -- 3.3 Fractional-order Generalized Laguerre-Gauss-type Quadratures -- 4 Operational Matrices of Caputo Fractional Derivatives -- 4.1 GLOM of Fractional Derivatives -- 4.2 FGLOM of Fractional Derivatives -- 5 Operational Matrices of Riemann-Liouville Fractional Integrals -- 5.1 GLOM of Fractional Integration -- 5.2 FGLOM of Fractional Integration -- 6 Spectral Methods for FDEs -- 6.1 Generalized Laguerre Tau Operational Matrix Formulation Method -- 6.2 FGLFs Tau Operational Matrix Formulation Method -- 6.3 Tau Method Based on FGLOM of Fractional Integration -- 6.4 Collocation Method for Nonlinear FDEs -- 6.5 Collocation Method for System of FDEs -- 7 Applications and Numerical Results -- From Leibniz's Notation for Derivative to the Fractal Derivative, Fractional Derivative and Application in Mongolian Yurt -- 1 Introduction -- 2 Fractal Derivative -- 3 On Definitions of Fractional Derivatives -- 3.1 Variational Iteration Method -- 3.2 Definitions on Fractional Derivatives -- 4 Mongolian Yurt, Biomimic Design of Cocoon and its Evolution -- 4.1 Pupa-cocoon System -- 4.2 Fractal Hierarchy and Local Fractional Model -- 5 Conclusions -- Cantor-type spherical-coordinate Method for Differential Equations within Local Fractional Derivatives -- 1 Introduction -- 2 Mathematical Tools -- 3 Cantor-type Spherical-coordinate Method -- 4 Examples -- 5 Conclusions -- Approximate Methods for Local Fractional Differential Equations -- 1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.3 Common Methods of Solutions Involving Time-Fractional Derivatives -- 2 Preliminaries Necessary Mathematical Background -- 2.1 Time-Fractional Integral and Derivatives -- 2.2 Integral-Balance Method -- 3 Introductory Examples -- 3.1 Fading Memory in the Diffusion Term -- 3.2 Example 1: Diffusion of Momentum with Elastic Effects Only -- 4 Examples Involving Time-fractional Derivatives -- 4.1 Example 2: Time-Fractional Subdiffusion Equation -- 4.2 Approximate Parabolic Profiles -- 4.3 Calibration of the Profile Exponent and Results Thereof -- 4.4 Example 3: Subdiffusion Equation: A Solution by a Weak Approximate Profile -- 5 Transient Flows of Viscoelastic Fluids -- 5.1 Example 4: Stokes' First Problem of a Second Grade Fractional (viscoelastic) Fluid -- 5.2 Example 5: Transient Flow of a Generalized Second Grade Fluid Due to a Constant Surface Shear Stress -- 6 Final Comments and Results Outlines -- A Study of Sequential Fractional q-integro-difference Equations with Perturbed Anti-periodic Boundary Conditions -- 1 Introduction -- 2 Preliminaries -- 3 Main Results -- 4 Example -- Fractional Diffusion Equation, Sorption and Reaction Processes on a Surface -- 1 Introduction -- 2 Diffusion and Reaction -- 3 Discussion and Conclusions -- Fractional Order Models for Electrochemical Devices -- 1 Introduction -- 2 Fractional Modeling of Supercapacitors -- 3 Fractional Modeling of Lead Acid Batteries with Application to State of Charge and State of Health Estimation -- 4 Fractional Modeling of Lithium-ion Batteries with Application to State of Charge -- 5 Conclusion -- Results for an Electrolytic Cell Containing Two Groups of Ions: PNP -- Model and Fractional Approach -- 1 Introduction -- 2 Fractional Diffusion and Impedance -- 3 Conclusions -- Application of Fractional Calculus to Epidemiology -- 1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2 The Theory of Local Fractional Calculus -- 3 Analysis of the Methods -- 3.1 The local fractional variational iteration method -- 3.2 The local fractional Adomian decomposition method -- 3.3 The local fractional series expansion method -- 4 Applications to Solve Partial Differential Equations Involving Local Fractional Derivatives -- 4.1 Solving the linear Boussinesq equation occurring in fractal long water waves with local fractional variational iteration method -- 4.2 Solving the equation of the fractal motion of a long string by the local fractional Adomian decomposition method -- 4.3 Solving partial differential equations arising from the fractal transverse vibration of a beam with local fractional series expansion method -- 5 Conclusions -- Numerical Solutions for ODEs with Local Fractional Derivative -- 1 Introduction -- 2 The Generalized Local Fractional Taylor Theorems -- 3 Extended DTM -- 4 Four Illustrative Examples -- 5 Conclusions -- Local Fractional Calculus Application to Differential Equations Arising in Fractal Heat Transfer -- 1 Introduction -- 2 Theory of Local Fractional Vector Calculus -- 3 The Local Fractional Heat Equations Arising in Fractal Heat Transfer -- 3.1 The Non-homogeneous Heat Problems Arising in Fractal Heat Flow -- 3.2 The Homogeneous Heat Problems Arising in Fractal Heat Flow -- 4 Local Fractional Poisson Problems Arising in Fractal Heat Flow -- 5 Local Fractional Laplace Problems Arising From Fractal Heat Flow -- 6 The 2D Partial Differential Equations of Fractal Heat Transfer in Cantor-type Circle Coordinate Systems -- 7 Conclusions -- Local Fractional Laplace Decomposition Method for Solving Linear Partial Differential Equations with Local Fractional Derivative -- 1 Introduction -- 2 Mathematical Fundamentals -- 3 Local Fractional Laplace Decomposition Method -- 4 Illustrative Examples -- 5 Conclusions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Calculus on Fractals -- 1 Introduction -- 2 Calculus on Fractal Subset of Real-Line -- 2.1 Staircase Functions -- 2.2 F-Limit and F-Continuity -- 2.3 F-Integration -- 2.4 F-Differentiation -- 2.5 First Fundamental Theorem of F-calculus -- 2.6 Second Fundamental Theorem of F-calculus -- 2.7 Taylor Series on Fractal Sets -- 2.8 Integration by Parts in F-calculus -- 3 Fractal F-differential Equation -- 4 Calculus on Fractal Curves -- 4.1 Staircase Function on Fractal Curves -- 4.2 F-Limit and F-Continuity on Fractal Curves -- 4.3 F-integration on Fractal Curves -- 4.4 F-Differentiation on Fractal Curves -- 4.5 First Fundamental Theorem on Fractal Curve -- 4.6 Second Fundamental Theorem on Fractal Curve -- 5 Gradient, Divergent, Curl and Laplacian on Fractal Curves -- 5.1 Gradient on Fractal Curves -- 5.2 Divergent on Fractal Curves -- 5.3 Laplacian on Fractal Curves -- 6 Function Spaces in F-calculus -- 6.1 Spaces of F-differentiable Functions -- 6.2 Spaces of F-Integrable Functions -- 7 Calculus on Fractal Subsets of R3 -- 7.1 Integral Staircase for Fractal Subsets of R3 -- 7.2 F-integration on Fractal Subset of R3 -- 7.3 F-differentiation on Fractal Subsets of R3 -- 8 F-differential Form -- 8.1 F-Fractional 1-forms -- 8.2 F- Fractional Exactness -- 8.3 F-Fractional 2-forms -- 9 Gauge Integral and F-calculus -- 10 Application of F-calculus -- 10.1 Lagrangian and Hamiltonian Mechanics on Fractals -- 11 Quantum Mechanics on Fractal Curve -- 11.1 Generalized Feynman Path Integral Method -- 12 Continuity Equation and Probability on Fractal -- 13 Newtonian Mechanics on Fractals -- 13.1 Kinematics of Motion -- 13.2 Dynamics of Motion -- 14 Work and Energy Theorem on Fractals -- 15 Langevin F-Equation on Fractals -- 16 Maxwell's Equation on Fractals</subfield></datafield><datafield tag="506" ind1="0" ind2=" "><subfield code="a">Open Access</subfield><subfield code="5">EbpS</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Srivastava, Hari M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiao-Jun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Cattani, Carlo</subfield><subfield code="t">Fractional Dynamics</subfield><subfield code="d">Warschau/Berlin : De Gruyter, ©2016</subfield><subfield code="z">9783110472080</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;AN=1805188</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EOAC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033658623</subfield></datafield></record></collection>
id DE-604.BV048278457
illustrated Not Illustrated
indexdate 2024-12-24T09:24:08Z
institution BVB
isbn 3110470713
3110472082
3110472090
9783110470710
9783110472080
9783110472097
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033658623
oclc_num 945783381
open_access_boolean 1
owner DE-355
DE-BY-UBR
owner_facet DE-355
DE-BY-UBR
physical 1 Online-Ressource (1 electronic resource (392 Seiten))
psigel ZDB-4-EOAC
publishDateSearch 2015
publishDateSort 2015
record_format marc
spellingShingle Cattani, Carlo
Srivastava, Hari M.
Yang, Xiao-Jun
Fractional Dynamics
Fractional Dynamics -- Local Fractional Calculus on Shannon Wavelet Basis -- 1 Introduction -- 2 Preliminary Remarks -- 2.1 Shannon Wavelets in the Fourier Domain -- 2.2 Properties of the Shannon Wavelet -- 3 Connection Coefficients -- 3.1 Properties of Connection Coefficients -- 4 Differential Properties of L2(R)-functions in Shannon Wavelet Basis -- 4.1 Taylor Series -- 4.2 Functional Equations -- 4.3 Error of the Approximation by Connection Coefficients -- 5 Fractional Derivatives of the Wavelet Basis -- 5.1 Complex Shannon Wavelets on Fractal Sets of Dimension -- 5.2 Local Fractional Derivatives of Complex Functions -- 5.3 Example: Fractional Derivative of a Gaussian on a Fractal Set -- Discretely and Continuously Distributed Dynamical Systems with Fractional Nonlocality -- 1 Introduction -- 2 Lattice with Long-range Properties -- 3 Lattice Fractional Nonlinear Equations -- 4 Continuum Fractional Derivatives of the Riesz Type -- 5 From Lattice Equations to Continuum Equations -- 6 Fractional Continuum Nonlinear Equations -- 7 Conclusion -- Temporal Patterns in Earthquake Data-series -- 1 Introduction -- 2 Dataset -- 3 Mathematical Tools -- 3.1 Hierarchichal Clustering -- 3.2 Multidimensional Scaling -- 4 Data Analysys and Pattern Visualization -- 4.1 Hierarchical Clustering Analysis and Comparison -- 4.2 MDS Analysis and Visualization -- 5 Conclusions -- An Integral Transform arising from Fractional Calculus -- 1 Integral Transform R -- 2 Dirac's -function and R -- 3 Space of Generalized Functions Spanned by a(n) -- 4 Extended Borel Transform -- 5 The Transform R and Extended Borel Transform -- 6 Application of R to Fractional Differential Equations -- Approximate Solutions to Time-fractional Models by Integral-balance Approach -- 1 Introduction -- 1.1 Subdiffusion -- 1.2 Time-Fractional Derivatives in Rheology
1.1 Modelling Epidemic of Whooping Cough with Concept of Fractional Order Derivative -- 2 Conclusion -- On Numerical Methods for Fractional Differential Equation on a Semi-infinite Interval -- 1 Introduction -- 2 Preliminaries and Notations -- 3 Generalized Laguerre Polynomials/Functions -- 3.1 Generalized Laguerre Polynomials -- 3.2 Fractional-order Generalized Laguerre Functions -- 3.3 Fractional-order Generalized Laguerre-Gauss-type Quadratures -- 4 Operational Matrices of Caputo Fractional Derivatives -- 4.1 GLOM of Fractional Derivatives -- 4.2 FGLOM of Fractional Derivatives -- 5 Operational Matrices of Riemann-Liouville Fractional Integrals -- 5.1 GLOM of Fractional Integration -- 5.2 FGLOM of Fractional Integration -- 6 Spectral Methods for FDEs -- 6.1 Generalized Laguerre Tau Operational Matrix Formulation Method -- 6.2 FGLFs Tau Operational Matrix Formulation Method -- 6.3 Tau Method Based on FGLOM of Fractional Integration -- 6.4 Collocation Method for Nonlinear FDEs -- 6.5 Collocation Method for System of FDEs -- 7 Applications and Numerical Results -- From Leibniz's Notation for Derivative to the Fractal Derivative, Fractional Derivative and Application in Mongolian Yurt -- 1 Introduction -- 2 Fractal Derivative -- 3 On Definitions of Fractional Derivatives -- 3.1 Variational Iteration Method -- 3.2 Definitions on Fractional Derivatives -- 4 Mongolian Yurt, Biomimic Design of Cocoon and its Evolution -- 4.1 Pupa-cocoon System -- 4.2 Fractal Hierarchy and Local Fractional Model -- 5 Conclusions -- Cantor-type spherical-coordinate Method for Differential Equations within Local Fractional Derivatives -- 1 Introduction -- 2 Mathematical Tools -- 3 Cantor-type Spherical-coordinate Method -- 4 Examples -- 5 Conclusions -- Approximate Methods for Local Fractional Differential Equations -- 1 Introduction
1.3 Common Methods of Solutions Involving Time-Fractional Derivatives -- 2 Preliminaries Necessary Mathematical Background -- 2.1 Time-Fractional Integral and Derivatives -- 2.2 Integral-Balance Method -- 3 Introductory Examples -- 3.1 Fading Memory in the Diffusion Term -- 3.2 Example 1: Diffusion of Momentum with Elastic Effects Only -- 4 Examples Involving Time-fractional Derivatives -- 4.1 Example 2: Time-Fractional Subdiffusion Equation -- 4.2 Approximate Parabolic Profiles -- 4.3 Calibration of the Profile Exponent and Results Thereof -- 4.4 Example 3: Subdiffusion Equation: A Solution by a Weak Approximate Profile -- 5 Transient Flows of Viscoelastic Fluids -- 5.1 Example 4: Stokes' First Problem of a Second Grade Fractional (viscoelastic) Fluid -- 5.2 Example 5: Transient Flow of a Generalized Second Grade Fluid Due to a Constant Surface Shear Stress -- 6 Final Comments and Results Outlines -- A Study of Sequential Fractional q-integro-difference Equations with Perturbed Anti-periodic Boundary Conditions -- 1 Introduction -- 2 Preliminaries -- 3 Main Results -- 4 Example -- Fractional Diffusion Equation, Sorption and Reaction Processes on a Surface -- 1 Introduction -- 2 Diffusion and Reaction -- 3 Discussion and Conclusions -- Fractional Order Models for Electrochemical Devices -- 1 Introduction -- 2 Fractional Modeling of Supercapacitors -- 3 Fractional Modeling of Lead Acid Batteries with Application to State of Charge and State of Health Estimation -- 4 Fractional Modeling of Lithium-ion Batteries with Application to State of Charge -- 5 Conclusion -- Results for an Electrolytic Cell Containing Two Groups of Ions: PNP -- Model and Fractional Approach -- 1 Introduction -- 2 Fractional Diffusion and Impedance -- 3 Conclusions -- Application of Fractional Calculus to Epidemiology -- 1 Introduction
2 The Theory of Local Fractional Calculus -- 3 Analysis of the Methods -- 3.1 The local fractional variational iteration method -- 3.2 The local fractional Adomian decomposition method -- 3.3 The local fractional series expansion method -- 4 Applications to Solve Partial Differential Equations Involving Local Fractional Derivatives -- 4.1 Solving the linear Boussinesq equation occurring in fractal long water waves with local fractional variational iteration method -- 4.2 Solving the equation of the fractal motion of a long string by the local fractional Adomian decomposition method -- 4.3 Solving partial differential equations arising from the fractal transverse vibration of a beam with local fractional series expansion method -- 5 Conclusions -- Numerical Solutions for ODEs with Local Fractional Derivative -- 1 Introduction -- 2 The Generalized Local Fractional Taylor Theorems -- 3 Extended DTM -- 4 Four Illustrative Examples -- 5 Conclusions -- Local Fractional Calculus Application to Differential Equations Arising in Fractal Heat Transfer -- 1 Introduction -- 2 Theory of Local Fractional Vector Calculus -- 3 The Local Fractional Heat Equations Arising in Fractal Heat Transfer -- 3.1 The Non-homogeneous Heat Problems Arising in Fractal Heat Flow -- 3.2 The Homogeneous Heat Problems Arising in Fractal Heat Flow -- 4 Local Fractional Poisson Problems Arising in Fractal Heat Flow -- 5 Local Fractional Laplace Problems Arising From Fractal Heat Flow -- 6 The 2D Partial Differential Equations of Fractal Heat Transfer in Cantor-type Circle Coordinate Systems -- 7 Conclusions -- Local Fractional Laplace Decomposition Method for Solving Linear Partial Differential Equations with Local Fractional Derivative -- 1 Introduction -- 2 Mathematical Fundamentals -- 3 Local Fractional Laplace Decomposition Method -- 4 Illustrative Examples -- 5 Conclusions
Calculus on Fractals -- 1 Introduction -- 2 Calculus on Fractal Subset of Real-Line -- 2.1 Staircase Functions -- 2.2 F-Limit and F-Continuity -- 2.3 F-Integration -- 2.4 F-Differentiation -- 2.5 First Fundamental Theorem of F-calculus -- 2.6 Second Fundamental Theorem of F-calculus -- 2.7 Taylor Series on Fractal Sets -- 2.8 Integration by Parts in F-calculus -- 3 Fractal F-differential Equation -- 4 Calculus on Fractal Curves -- 4.1 Staircase Function on Fractal Curves -- 4.2 F-Limit and F-Continuity on Fractal Curves -- 4.3 F-integration on Fractal Curves -- 4.4 F-Differentiation on Fractal Curves -- 4.5 First Fundamental Theorem on Fractal Curve -- 4.6 Second Fundamental Theorem on Fractal Curve -- 5 Gradient, Divergent, Curl and Laplacian on Fractal Curves -- 5.1 Gradient on Fractal Curves -- 5.2 Divergent on Fractal Curves -- 5.3 Laplacian on Fractal Curves -- 6 Function Spaces in F-calculus -- 6.1 Spaces of F-differentiable Functions -- 6.2 Spaces of F-Integrable Functions -- 7 Calculus on Fractal Subsets of R3 -- 7.1 Integral Staircase for Fractal Subsets of R3 -- 7.2 F-integration on Fractal Subset of R3 -- 7.3 F-differentiation on Fractal Subsets of R3 -- 8 F-differential Form -- 8.1 F-Fractional 1-forms -- 8.2 F- Fractional Exactness -- 8.3 F-Fractional 2-forms -- 9 Gauge Integral and F-calculus -- 10 Application of F-calculus -- 10.1 Lagrangian and Hamiltonian Mechanics on Fractals -- 11 Quantum Mechanics on Fractal Curve -- 11.1 Generalized Feynman Path Integral Method -- 12 Continuity Equation and Probability on Fractal -- 13 Newtonian Mechanics on Fractals -- 13.1 Kinematics of Motion -- 13.2 Dynamics of Motion -- 14 Work and Energy Theorem on Fractals -- 15 Langevin F-Equation on Fractals -- 16 Maxwell's Equation on Fractals
Mathematics
Physics
title Fractional Dynamics
title_auth Fractional Dynamics
title_exact_search Fractional Dynamics
title_full Fractional Dynamics
title_fullStr Fractional Dynamics
title_full_unstemmed Fractional Dynamics
title_short Fractional Dynamics
title_sort fractional dynamics
topic Mathematics
Physics
topic_facet Mathematics
Physics
url https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1805188
work_keys_str_mv AT cattanicarlo fractionaldynamics
AT srivastavaharim fractionaldynamics
AT yangxiaojun fractionaldynamics