From AI to autonomous and connected vehicles advanced driver-assistance systems (ADAS)

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Bensrhair, Abdelaziz (HerausgeberIn), Bapin, Thierry (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: London, UK ISTE 2021
Hoboken, NJ Wiley
Schriftenreihe:Science, society and new technologies series. Digital sciences set Volume 2
Online-Zugang:FHI01
TUM01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV048228609
003 DE-604
005 20240229
007 cr|uuu---uuuuu
008 220517s2021 |||| o||u| ||||||eng d
020 |a 9781119855491  |9 978-1-119-85549-1 
020 |a 9781119855507  |9 9781119855507 
020 |a 9781119855484  |9 9781119855484 
035 |a (ZDB-30-PQE)EBC6712451 
035 |a (ZDB-30-PAD)EBC6712451 
035 |a (ZDB-89-EBL)EBL6712451 
035 |a (OCoLC)1266909081 
035 |a (DE-599)BVBBV048228609 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-573 
082 0 |a 629.2046 
084 |a VER 080  |2 stub 
084 |a DAT 700  |2 stub 
245 1 0 |a From AI to autonomous and connected vehicles  |b advanced driver-assistance systems (ADAS)  |c edited by Abdelaziz Bensrhair, Thierry Bapin 
264 1 |a London, UK  |b ISTE  |c 2021 
264 1 |a Hoboken, NJ  |b Wiley 
264 4 |c © 2021 
300 |a 1 Online-Ressource (xxiv, 251 Seiten)  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Science, society and new technologies series. Digital sciences set  |v Volume 2 
490 0 |a Mechanical engineering and solid mechanics 
500 |a Description based on publisher supplied metadata and other sources 
505 8 |a Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword 1 -- Foreword 2 -- Foreword 3 -- Preface -- 1 Artificial Intelligence for Vehicles -- 1.1. What is AI? -- 1.2. The main methods of AI -- 1.2.1. Deep Learning -- 1.2.2. Machine Learning -- 1.2.3. Clustering -- 1.2.4. Reinforcement learning -- 1.2.5. Case-based reasoning -- 1.2.6. Logical reasoning -- 1.2.7. Multi-agent systems -- 1.2.8. PAC learning -- 1.3. Modern AI challenges for the industry -- 1.3.1. Explainability: XAI (eXplainable Artificial Intelligence) -- 1.3.2. The design of so-called "hybrid" AI systems -- 1.4. What is an "intelligent" vehicle? -- 1.4.1. ADAS -- 1.4.2. The autonomous vehicle -- 1.4.2. The construction of the intelligent vehicle's basic building blocks employing AI methods -- 1.5. References -- 2 Conventional Vision or Not: A Selection of Low-level Algorithms -- 2.1. Introduction -- 2.2. Vision sensors -- 2.2.1. Conventional cameras -- 2.2.2. Emerging sensors -- 2.3. Vision algorithms -- 2.3.1. Choosing the type of information to be retrieved from the images -- 2.3.2. Estimation of ego-movement and localization -- 2.3.3. Detection of the navigable space by a dense approach -- 2.3.4. From the detection of 3D plans to visual odometry -- 2.3.5. Detection of obstacles through the compensation of ego-movement -- 2.3.6. Visual odometry -- 2.4. Conclusion -- 2.5. References -- 3 Automated Driving, a Question of Trajectory Planning -- 3.1. Definition of planning -- 3.2. Trajectory planning: general characteristics -- 3.2.1. Variables -- 3.2.2. Constraints -- 3.2.3. Cost functions -- 3.2.4. Planning methodology -- 3.2.5. Co-pilot respecting legal traffic rules -- 3.2.6. Trajectory prediction for "ghost" objects and vehicles -- 3.2.7. Trajectory evaluation -- 3.2.8. Results on real vehicles and on simulators -- 3.3. Multi-objective trajectory planning 
505 8 |a 3.3.1. Linear scalarization -- 3.3.2. Nonlinear scalarization -- 3.3.3. Ideal methods -- 3.3.4. Summary of multi-objective planning methods -- 3.3.5. High level information -- 3.4. Conclusion on multi-agent planning for a fleet of vehicles: the future of planning -- 3.5. References -- 4 From Virtual to Real, How to Prototype, Test, Evaluate and Validate ADAS for the Automated and Connected Vehicle? -- 4.1. Context and goals -- 4.2. Generic dynamic and distributed architecture -- 4.2.1. Introduction -- 4.2.2. An interoperable platform -- 4.3. Environment and climatic conditions -- 4.3.1. Introduction -- 4.3.2. Environmental modeling: lights, shadows, materials and textures -- 4.3.3. Degraded, adverse and climatic conditions -- 4.3.4. Visibility layers and ground truths -- 4.4. Modeling of perception sensors -- 4.4.1. Typology of sensor technologies -- 4.4.2. From a functional model to a physical model -- 4.4.3. Optical sensors -- 4.4.4. LIght Detection And Ranging (LIDAR) -- 4.4.5. RAdio Detection And Ranging (RADAR) -- 4.4.6. Global Navigation Satellite System (GNSS) -- 4.5. Connectivity and means of communication -- 4.5.1. State of the art -- 4.5.2. Statistical model of the propagation channel -- 4.5.3. Multi-platform physico-realistic model -- 4.6. Some relevant use cases -- 4.6.1. Graphic resources -- 4.6.2. Communication and overall risk -- 4.6.3. Automated parking maneuver -- 4.6.4. Co-pilot and automated driving -- 4.6.5. Eco-mobility and eco-responsible driving profile -- 4.7. Conclusion and perspectives -- 4.8. References -- 5 Standards for Cooperative Intelligent Transport Systems (C-ITS) -- 5.1. Context and goals -- 5.1.1. Intelligent transport systems (ITS) -- 5.1.2. The connected and cooperative vehicle -- 5.1.3. Silos communication systems -- 5.1.4. Cooperative Intelligent Transport Systems (C-ITS) 
505 8 |a 5.1.5. Diversity of Cooperative ITS services -- 5.1.6. Standardization bodies -- 5.1.7. Genesis of the "Cooperative ITS" standards -- 5.2. "ITS station" architecture -- 5.2.1. General description -- 5.2.2. ITS station communication units -- 5.2.3. Types of ITS stations -- 5.3. Features of the ITS station architecture -- 5.3.1. Combination of communication technologies -- 5.3.2. Centralized communications -- 5.3.3. Localized communications (V2X) -- 5.3.4. Hybrid communications -- 5.3.5. Extensive communications -- 5.3.6. Communications management -- 5.3.7. Messaging -- 5.3.8. Data organization and identification -- 5.3.9. Secure communications and access to data -- 5.3.10. Evolution of standards -- 5.4. Features of the ITS station architecture -- 5.5. Deployment of Cooperative ITS services -- 5.6. References -- 6 The Integration of Pedestrian Orientation for the Benefit of ADAS: A Moroccan Case Study -- 6.1. Introduction -- 6.2. Advanced Driver Assistance System (ADAS) -- 6.3. Proposal for an applicable system to the Moroccan case -- 6.4. General conclusion -- 6.5. References -- 7 Autonomous Vehicle: What Legal Issues? -- 7.1. Introduction -- 7.2. The definition of the so-called "autonomous" vehicle -- 7.3. Legal framework and experiments -- 7.4. The notion of the "driver" -- 7.5. The notion of the "custodian" -- 7.6. What liability regime? -- 7.7. Self-driving vehicle insurance? -- 7.8. Personal data and the autonomous vehicle -- 7.9. The need for uniform regulation -- List of Authors -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA. 
700 1 |a Bensrhair, Abdelaziz  |4 edt 
700 1 |a Bapin, Thierry  |4 edt 
776 0 8 |i Erscheint auch als  |a Bensrhair, Abdelaziz  |t From AI to Autonomous and Connected Vehicles  |d Newark : John Wiley & Sons, Incorporated,c2021  |n Druck-Ausgabe  |z 978-1-78630-727-9 
830 0 |a Science, society and new technologies series. Digital sciences set  |v Volume 2  |w (DE-604)BV048446103  |9 2 
856 4 0 |u https://ieeexplore.ieee.org/book/9714893  |x Aggregator  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-30-PQE  |a ZDB-35-IWT 
999 |a oai:aleph.bib-bvb.de:BVB01-033609328 
966 e |u https://ieeexplore.ieee.org/book/9714893  |l FHI01  |p ZDB-35-IWT  |x Verlag  |3 Volltext 
966 e |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6712451  |l TUM01  |p ZDB-30-PQE  |q TUM_PDA_PQE_Kauf  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2647909
DE-BY-TUM_local_url Verlag
https://ieeexplore.ieee.org/book/9714893
https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6712451
Aggregator
_version_ 1816714804301135872
adam_txt
any_adam_object
any_adam_object_boolean
author2 Bensrhair, Abdelaziz
Bapin, Thierry
author2_role edt
edt
author2_variant a b ab
t b tb
author_facet Bensrhair, Abdelaziz
Bapin, Thierry
building Verbundindex
bvnumber BV048228609
classification_tum VER 080
DAT 700
collection ZDB-30-PQE
ZDB-35-IWT
contents Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword 1 -- Foreword 2 -- Foreword 3 -- Preface -- 1 Artificial Intelligence for Vehicles -- 1.1. What is AI? -- 1.2. The main methods of AI -- 1.2.1. Deep Learning -- 1.2.2. Machine Learning -- 1.2.3. Clustering -- 1.2.4. Reinforcement learning -- 1.2.5. Case-based reasoning -- 1.2.6. Logical reasoning -- 1.2.7. Multi-agent systems -- 1.2.8. PAC learning -- 1.3. Modern AI challenges for the industry -- 1.3.1. Explainability: XAI (eXplainable Artificial Intelligence) -- 1.3.2. The design of so-called "hybrid" AI systems -- 1.4. What is an "intelligent" vehicle? -- 1.4.1. ADAS -- 1.4.2. The autonomous vehicle -- 1.4.2. The construction of the intelligent vehicle's basic building blocks employing AI methods -- 1.5. References -- 2 Conventional Vision or Not: A Selection of Low-level Algorithms -- 2.1. Introduction -- 2.2. Vision sensors -- 2.2.1. Conventional cameras -- 2.2.2. Emerging sensors -- 2.3. Vision algorithms -- 2.3.1. Choosing the type of information to be retrieved from the images -- 2.3.2. Estimation of ego-movement and localization -- 2.3.3. Detection of the navigable space by a dense approach -- 2.3.4. From the detection of 3D plans to visual odometry -- 2.3.5. Detection of obstacles through the compensation of ego-movement -- 2.3.6. Visual odometry -- 2.4. Conclusion -- 2.5. References -- 3 Automated Driving, a Question of Trajectory Planning -- 3.1. Definition of planning -- 3.2. Trajectory planning: general characteristics -- 3.2.1. Variables -- 3.2.2. Constraints -- 3.2.3. Cost functions -- 3.2.4. Planning methodology -- 3.2.5. Co-pilot respecting legal traffic rules -- 3.2.6. Trajectory prediction for "ghost" objects and vehicles -- 3.2.7. Trajectory evaluation -- 3.2.8. Results on real vehicles and on simulators -- 3.3. Multi-objective trajectory planning
3.3.1. Linear scalarization -- 3.3.2. Nonlinear scalarization -- 3.3.3. Ideal methods -- 3.3.4. Summary of multi-objective planning methods -- 3.3.5. High level information -- 3.4. Conclusion on multi-agent planning for a fleet of vehicles: the future of planning -- 3.5. References -- 4 From Virtual to Real, How to Prototype, Test, Evaluate and Validate ADAS for the Automated and Connected Vehicle? -- 4.1. Context and goals -- 4.2. Generic dynamic and distributed architecture -- 4.2.1. Introduction -- 4.2.2. An interoperable platform -- 4.3. Environment and climatic conditions -- 4.3.1. Introduction -- 4.3.2. Environmental modeling: lights, shadows, materials and textures -- 4.3.3. Degraded, adverse and climatic conditions -- 4.3.4. Visibility layers and ground truths -- 4.4. Modeling of perception sensors -- 4.4.1. Typology of sensor technologies -- 4.4.2. From a functional model to a physical model -- 4.4.3. Optical sensors -- 4.4.4. LIght Detection And Ranging (LIDAR) -- 4.4.5. RAdio Detection And Ranging (RADAR) -- 4.4.6. Global Navigation Satellite System (GNSS) -- 4.5. Connectivity and means of communication -- 4.5.1. State of the art -- 4.5.2. Statistical model of the propagation channel -- 4.5.3. Multi-platform physico-realistic model -- 4.6. Some relevant use cases -- 4.6.1. Graphic resources -- 4.6.2. Communication and overall risk -- 4.6.3. Automated parking maneuver -- 4.6.4. Co-pilot and automated driving -- 4.6.5. Eco-mobility and eco-responsible driving profile -- 4.7. Conclusion and perspectives -- 4.8. References -- 5 Standards for Cooperative Intelligent Transport Systems (C-ITS) -- 5.1. Context and goals -- 5.1.1. Intelligent transport systems (ITS) -- 5.1.2. The connected and cooperative vehicle -- 5.1.3. Silos communication systems -- 5.1.4. Cooperative Intelligent Transport Systems (C-ITS)
5.1.5. Diversity of Cooperative ITS services -- 5.1.6. Standardization bodies -- 5.1.7. Genesis of the "Cooperative ITS" standards -- 5.2. "ITS station" architecture -- 5.2.1. General description -- 5.2.2. ITS station communication units -- 5.2.3. Types of ITS stations -- 5.3. Features of the ITS station architecture -- 5.3.1. Combination of communication technologies -- 5.3.2. Centralized communications -- 5.3.3. Localized communications (V2X) -- 5.3.4. Hybrid communications -- 5.3.5. Extensive communications -- 5.3.6. Communications management -- 5.3.7. Messaging -- 5.3.8. Data organization and identification -- 5.3.9. Secure communications and access to data -- 5.3.10. Evolution of standards -- 5.4. Features of the ITS station architecture -- 5.5. Deployment of Cooperative ITS services -- 5.6. References -- 6 The Integration of Pedestrian Orientation for the Benefit of ADAS: A Moroccan Case Study -- 6.1. Introduction -- 6.2. Advanced Driver Assistance System (ADAS) -- 6.3. Proposal for an applicable system to the Moroccan case -- 6.4. General conclusion -- 6.5. References -- 7 Autonomous Vehicle: What Legal Issues? -- 7.1. Introduction -- 7.2. The definition of the so-called "autonomous" vehicle -- 7.3. Legal framework and experiments -- 7.4. The notion of the "driver" -- 7.5. The notion of the "custodian" -- 7.6. What liability regime? -- 7.7. Self-driving vehicle insurance? -- 7.8. Personal data and the autonomous vehicle -- 7.9. The need for uniform regulation -- List of Authors -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.
ctrlnum (ZDB-30-PQE)EBC6712451
(ZDB-30-PAD)EBC6712451
(ZDB-89-EBL)EBL6712451
(OCoLC)1266909081
(DE-599)BVBBV048228609
dewey-full 629.2046
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 629 - Other branches of engineering
dewey-raw 629.2046
dewey-search 629.2046
dewey-sort 3629.2046
dewey-tens 620 - Engineering and allied operations
discipline Informatik
Verkehrstechnik
Verkehr / Transport
discipline_str_mv Informatik
Verkehrstechnik
Verkehr / Transport
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07529nmm a2200529zcb4500</leader><controlfield tag="001">BV048228609</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240229 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220517s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119855491</subfield><subfield code="9">978-1-119-85549-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119855507</subfield><subfield code="9">9781119855507</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119855484</subfield><subfield code="9">9781119855484</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6712451</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6712451</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6712451</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1266909081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048228609</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.2046</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VER 080</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 700</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From AI to autonomous and connected vehicles</subfield><subfield code="b">advanced driver-assistance systems (ADAS)</subfield><subfield code="c">edited by Abdelaziz Bensrhair, Thierry Bapin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London, UK</subfield><subfield code="b">ISTE</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiv, 251 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Science, society and new technologies series. Digital sciences set</subfield><subfield code="v">Volume 2</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mechanical engineering and solid mechanics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword 1 -- Foreword 2 -- Foreword 3 -- Preface -- 1 Artificial Intelligence for Vehicles -- 1.1. What is AI? -- 1.2. The main methods of AI -- 1.2.1. Deep Learning -- 1.2.2. Machine Learning -- 1.2.3. Clustering -- 1.2.4. Reinforcement learning -- 1.2.5. Case-based reasoning -- 1.2.6. Logical reasoning -- 1.2.7. Multi-agent systems -- 1.2.8. PAC learning -- 1.3. Modern AI challenges for the industry -- 1.3.1. Explainability: XAI (eXplainable Artificial Intelligence) -- 1.3.2. The design of so-called "hybrid" AI systems -- 1.4. What is an "intelligent" vehicle? -- 1.4.1. ADAS -- 1.4.2. The autonomous vehicle -- 1.4.2. The construction of the intelligent vehicle's basic building blocks employing AI methods -- 1.5. References -- 2 Conventional Vision or Not: A Selection of Low-level Algorithms -- 2.1. Introduction -- 2.2. Vision sensors -- 2.2.1. Conventional cameras -- 2.2.2. Emerging sensors -- 2.3. Vision algorithms -- 2.3.1. Choosing the type of information to be retrieved from the images -- 2.3.2. Estimation of ego-movement and localization -- 2.3.3. Detection of the navigable space by a dense approach -- 2.3.4. From the detection of 3D plans to visual odometry -- 2.3.5. Detection of obstacles through the compensation of ego-movement -- 2.3.6. Visual odometry -- 2.4. Conclusion -- 2.5. References -- 3 Automated Driving, a Question of Trajectory Planning -- 3.1. Definition of planning -- 3.2. Trajectory planning: general characteristics -- 3.2.1. Variables -- 3.2.2. Constraints -- 3.2.3. Cost functions -- 3.2.4. Planning methodology -- 3.2.5. Co-pilot respecting legal traffic rules -- 3.2.6. Trajectory prediction for "ghost" objects and vehicles -- 3.2.7. Trajectory evaluation -- 3.2.8. Results on real vehicles and on simulators -- 3.3. Multi-objective trajectory planning</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.1. Linear scalarization -- 3.3.2. Nonlinear scalarization -- 3.3.3. Ideal methods -- 3.3.4. Summary of multi-objective planning methods -- 3.3.5. High level information -- 3.4. Conclusion on multi-agent planning for a fleet of vehicles: the future of planning -- 3.5. References -- 4 From Virtual to Real, How to Prototype, Test, Evaluate and Validate ADAS for the Automated and Connected Vehicle? -- 4.1. Context and goals -- 4.2. Generic dynamic and distributed architecture -- 4.2.1. Introduction -- 4.2.2. An interoperable platform -- 4.3. Environment and climatic conditions -- 4.3.1. Introduction -- 4.3.2. Environmental modeling: lights, shadows, materials and textures -- 4.3.3. Degraded, adverse and climatic conditions -- 4.3.4. Visibility layers and ground truths -- 4.4. Modeling of perception sensors -- 4.4.1. Typology of sensor technologies -- 4.4.2. From a functional model to a physical model -- 4.4.3. Optical sensors -- 4.4.4. LIght Detection And Ranging (LIDAR) -- 4.4.5. RAdio Detection And Ranging (RADAR) -- 4.4.6. Global Navigation Satellite System (GNSS) -- 4.5. Connectivity and means of communication -- 4.5.1. State of the art -- 4.5.2. Statistical model of the propagation channel -- 4.5.3. Multi-platform physico-realistic model -- 4.6. Some relevant use cases -- 4.6.1. Graphic resources -- 4.6.2. Communication and overall risk -- 4.6.3. Automated parking maneuver -- 4.6.4. Co-pilot and automated driving -- 4.6.5. Eco-mobility and eco-responsible driving profile -- 4.7. Conclusion and perspectives -- 4.8. References -- 5 Standards for Cooperative Intelligent Transport Systems (C-ITS) -- 5.1. Context and goals -- 5.1.1. Intelligent transport systems (ITS) -- 5.1.2. The connected and cooperative vehicle -- 5.1.3. Silos communication systems -- 5.1.4. Cooperative Intelligent Transport Systems (C-ITS)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1.5. Diversity of Cooperative ITS services -- 5.1.6. Standardization bodies -- 5.1.7. Genesis of the "Cooperative ITS" standards -- 5.2. "ITS station" architecture -- 5.2.1. General description -- 5.2.2. ITS station communication units -- 5.2.3. Types of ITS stations -- 5.3. Features of the ITS station architecture -- 5.3.1. Combination of communication technologies -- 5.3.2. Centralized communications -- 5.3.3. Localized communications (V2X) -- 5.3.4. Hybrid communications -- 5.3.5. Extensive communications -- 5.3.6. Communications management -- 5.3.7. Messaging -- 5.3.8. Data organization and identification -- 5.3.9. Secure communications and access to data -- 5.3.10. Evolution of standards -- 5.4. Features of the ITS station architecture -- 5.5. Deployment of Cooperative ITS services -- 5.6. References -- 6 The Integration of Pedestrian Orientation for the Benefit of ADAS: A Moroccan Case Study -- 6.1. Introduction -- 6.2. Advanced Driver Assistance System (ADAS) -- 6.3. Proposal for an applicable system to the Moroccan case -- 6.4. General conclusion -- 6.5. References -- 7 Autonomous Vehicle: What Legal Issues? -- 7.1. Introduction -- 7.2. The definition of the so-called "autonomous" vehicle -- 7.3. Legal framework and experiments -- 7.4. The notion of the "driver" -- 7.5. The notion of the "custodian" -- 7.6. What liability regime? -- 7.7. Self-driving vehicle insurance? -- 7.8. Personal data and the autonomous vehicle -- 7.9. The need for uniform regulation -- List of Authors -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bensrhair, Abdelaziz</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bapin, Thierry</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Bensrhair, Abdelaziz</subfield><subfield code="t">From AI to Autonomous and Connected Vehicles</subfield><subfield code="d">Newark : John Wiley &amp; Sons, Incorporated,c2021</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-78630-727-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Science, society and new technologies series. Digital sciences set</subfield><subfield code="v">Volume 2</subfield><subfield code="w">(DE-604)BV048446103</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/book/9714893</subfield><subfield code="x">Aggregator</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-IWT</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033609328</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/book/9714893</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-IWT</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6712451</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV048228609
illustrated Not Illustrated
index_date 2024-07-03T19:50:52Z
indexdate 2024-11-25T18:02:39Z
institution BVB
isbn 9781119855491
9781119855507
9781119855484
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033609328
oclc_num 1266909081
open_access_boolean
owner DE-91
DE-BY-TUM
DE-573
owner_facet DE-91
DE-BY-TUM
DE-573
physical 1 Online-Ressource (xxiv, 251 Seiten) Illustrationen, Diagramme
psigel ZDB-30-PQE
ZDB-35-IWT
ZDB-30-PQE TUM_PDA_PQE_Kauf
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher ISTE
Wiley
record_format marc
series Science, society and new technologies series. Digital sciences set
series2 Science, society and new technologies series. Digital sciences set
Mechanical engineering and solid mechanics
spellingShingle From AI to autonomous and connected vehicles advanced driver-assistance systems (ADAS)
Science, society and new technologies series. Digital sciences set
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword 1 -- Foreword 2 -- Foreword 3 -- Preface -- 1 Artificial Intelligence for Vehicles -- 1.1. What is AI? -- 1.2. The main methods of AI -- 1.2.1. Deep Learning -- 1.2.2. Machine Learning -- 1.2.3. Clustering -- 1.2.4. Reinforcement learning -- 1.2.5. Case-based reasoning -- 1.2.6. Logical reasoning -- 1.2.7. Multi-agent systems -- 1.2.8. PAC learning -- 1.3. Modern AI challenges for the industry -- 1.3.1. Explainability: XAI (eXplainable Artificial Intelligence) -- 1.3.2. The design of so-called "hybrid" AI systems -- 1.4. What is an "intelligent" vehicle? -- 1.4.1. ADAS -- 1.4.2. The autonomous vehicle -- 1.4.2. The construction of the intelligent vehicle's basic building blocks employing AI methods -- 1.5. References -- 2 Conventional Vision or Not: A Selection of Low-level Algorithms -- 2.1. Introduction -- 2.2. Vision sensors -- 2.2.1. Conventional cameras -- 2.2.2. Emerging sensors -- 2.3. Vision algorithms -- 2.3.1. Choosing the type of information to be retrieved from the images -- 2.3.2. Estimation of ego-movement and localization -- 2.3.3. Detection of the navigable space by a dense approach -- 2.3.4. From the detection of 3D plans to visual odometry -- 2.3.5. Detection of obstacles through the compensation of ego-movement -- 2.3.6. Visual odometry -- 2.4. Conclusion -- 2.5. References -- 3 Automated Driving, a Question of Trajectory Planning -- 3.1. Definition of planning -- 3.2. Trajectory planning: general characteristics -- 3.2.1. Variables -- 3.2.2. Constraints -- 3.2.3. Cost functions -- 3.2.4. Planning methodology -- 3.2.5. Co-pilot respecting legal traffic rules -- 3.2.6. Trajectory prediction for "ghost" objects and vehicles -- 3.2.7. Trajectory evaluation -- 3.2.8. Results on real vehicles and on simulators -- 3.3. Multi-objective trajectory planning
3.3.1. Linear scalarization -- 3.3.2. Nonlinear scalarization -- 3.3.3. Ideal methods -- 3.3.4. Summary of multi-objective planning methods -- 3.3.5. High level information -- 3.4. Conclusion on multi-agent planning for a fleet of vehicles: the future of planning -- 3.5. References -- 4 From Virtual to Real, How to Prototype, Test, Evaluate and Validate ADAS for the Automated and Connected Vehicle? -- 4.1. Context and goals -- 4.2. Generic dynamic and distributed architecture -- 4.2.1. Introduction -- 4.2.2. An interoperable platform -- 4.3. Environment and climatic conditions -- 4.3.1. Introduction -- 4.3.2. Environmental modeling: lights, shadows, materials and textures -- 4.3.3. Degraded, adverse and climatic conditions -- 4.3.4. Visibility layers and ground truths -- 4.4. Modeling of perception sensors -- 4.4.1. Typology of sensor technologies -- 4.4.2. From a functional model to a physical model -- 4.4.3. Optical sensors -- 4.4.4. LIght Detection And Ranging (LIDAR) -- 4.4.5. RAdio Detection And Ranging (RADAR) -- 4.4.6. Global Navigation Satellite System (GNSS) -- 4.5. Connectivity and means of communication -- 4.5.1. State of the art -- 4.5.2. Statistical model of the propagation channel -- 4.5.3. Multi-platform physico-realistic model -- 4.6. Some relevant use cases -- 4.6.1. Graphic resources -- 4.6.2. Communication and overall risk -- 4.6.3. Automated parking maneuver -- 4.6.4. Co-pilot and automated driving -- 4.6.5. Eco-mobility and eco-responsible driving profile -- 4.7. Conclusion and perspectives -- 4.8. References -- 5 Standards for Cooperative Intelligent Transport Systems (C-ITS) -- 5.1. Context and goals -- 5.1.1. Intelligent transport systems (ITS) -- 5.1.2. The connected and cooperative vehicle -- 5.1.3. Silos communication systems -- 5.1.4. Cooperative Intelligent Transport Systems (C-ITS)
5.1.5. Diversity of Cooperative ITS services -- 5.1.6. Standardization bodies -- 5.1.7. Genesis of the "Cooperative ITS" standards -- 5.2. "ITS station" architecture -- 5.2.1. General description -- 5.2.2. ITS station communication units -- 5.2.3. Types of ITS stations -- 5.3. Features of the ITS station architecture -- 5.3.1. Combination of communication technologies -- 5.3.2. Centralized communications -- 5.3.3. Localized communications (V2X) -- 5.3.4. Hybrid communications -- 5.3.5. Extensive communications -- 5.3.6. Communications management -- 5.3.7. Messaging -- 5.3.8. Data organization and identification -- 5.3.9. Secure communications and access to data -- 5.3.10. Evolution of standards -- 5.4. Features of the ITS station architecture -- 5.5. Deployment of Cooperative ITS services -- 5.6. References -- 6 The Integration of Pedestrian Orientation for the Benefit of ADAS: A Moroccan Case Study -- 6.1. Introduction -- 6.2. Advanced Driver Assistance System (ADAS) -- 6.3. Proposal for an applicable system to the Moroccan case -- 6.4. General conclusion -- 6.5. References -- 7 Autonomous Vehicle: What Legal Issues? -- 7.1. Introduction -- 7.2. The definition of the so-called "autonomous" vehicle -- 7.3. Legal framework and experiments -- 7.4. The notion of the "driver" -- 7.5. The notion of the "custodian" -- 7.6. What liability regime? -- 7.7. Self-driving vehicle insurance? -- 7.8. Personal data and the autonomous vehicle -- 7.9. The need for uniform regulation -- List of Authors -- Index -- Other titles from iSTE in Mechanical Engineering and Solid Mechanics -- EULA.
title From AI to autonomous and connected vehicles advanced driver-assistance systems (ADAS)
title_auth From AI to autonomous and connected vehicles advanced driver-assistance systems (ADAS)
title_exact_search From AI to autonomous and connected vehicles advanced driver-assistance systems (ADAS)
title_exact_search_txtP From AI to autonomous and connected vehicles advanced driver-assistance systems (ADAS)
title_full From AI to autonomous and connected vehicles advanced driver-assistance systems (ADAS) edited by Abdelaziz Bensrhair, Thierry Bapin
title_fullStr From AI to autonomous and connected vehicles advanced driver-assistance systems (ADAS) edited by Abdelaziz Bensrhair, Thierry Bapin
title_full_unstemmed From AI to autonomous and connected vehicles advanced driver-assistance systems (ADAS) edited by Abdelaziz Bensrhair, Thierry Bapin
title_short From AI to autonomous and connected vehicles
title_sort from ai to autonomous and connected vehicles advanced driver assistance systems adas
title_sub advanced driver-assistance systems (ADAS)
url https://ieeexplore.ieee.org/book/9714893
volume_link (DE-604)BV048446103
work_keys_str_mv AT bensrhairabdelaziz fromaitoautonomousandconnectedvehiclesadvanceddriverassistancesystemsadas
AT bapinthierry fromaitoautonomousandconnectedvehiclesadvanceddriverassistancesystemsadas