Renewable Hydrogen Production
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego
Elsevier
2021
|
Schlagworte: | |
Online-Zugang: | DE-2070s |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048226446 | ||
003 | DE-604 | ||
005 | 20230301 | ||
007 | cr|uuu---uuuuu | ||
008 | 220517s2021 xx o|||| 00||| eng d | ||
020 | |a 9780323851893 |9 978-0-323-85189-3 | ||
035 | |a (ZDB-30-PQE)EBC6817938 | ||
035 | |a (ZDB-30-PAD)EBC6817938 | ||
035 | |a (ZDB-89-EBL)EBL6817938 | ||
035 | |a (OCoLC)1290023721 | ||
035 | |a (DE-599)BVBBV048226446 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 333.794 | |
084 | |a ZP 4150 |0 (DE-625)157979: |2 rvk | ||
100 | 1 | |a Dincer, Ibrahim |e Verfasser |4 aut | |
245 | 1 | 0 | |a Renewable Hydrogen Production |
264 | 1 | |a San Diego |b Elsevier |c 2021 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (384 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks | |
505 | 8 | |a 4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant | |
505 | 8 | |a 5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy | |
505 | 8 | |a Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis | |
505 | 8 | |a Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger | |
505 | 8 | |a Heat exchanger | |
650 | 0 | 7 | |a Wasserstofferzeugung |0 (DE-588)4189271-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wasserstofferzeugung |0 (DE-588)4189271-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ishaq, Haris |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Dincer, Ibrahim |t Renewable Hydrogen Production |d San Diego : Elsevier,c2021 |z 9780323851763 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033607176 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6817938 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1819313073595351041 |
---|---|
any_adam_object | |
author | Dincer, Ibrahim |
author_facet | Dincer, Ibrahim |
author_role | aut |
author_sort | Dincer, Ibrahim |
author_variant | i d id |
building | Verbundindex |
bvnumber | BV048226446 |
classification_rvk | ZP 4150 |
collection | ZDB-30-PQE |
contents | Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks 4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant 5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger Heat exchanger |
ctrlnum | (ZDB-30-PQE)EBC6817938 (ZDB-30-PAD)EBC6817938 (ZDB-89-EBL)EBL6817938 (OCoLC)1290023721 (DE-599)BVBBV048226446 |
dewey-full | 333.794 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 333 - Economics of land and energy |
dewey-raw | 333.794 |
dewey-search | 333.794 |
dewey-sort | 3333.794 |
dewey-tens | 330 - Economics |
discipline | Energietechnik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10988nam a2200493zc 4500</leader><controlfield tag="001">BV048226446</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230301 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220517s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323851893</subfield><subfield code="9">978-0-323-85189-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6817938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6817938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6817938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1290023721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048226446</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.794</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 4150</subfield><subfield code="0">(DE-625)157979:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dincer, Ibrahim</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renewable Hydrogen Production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (384 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Heat exchanger</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserstofferzeugung</subfield><subfield code="0">(DE-588)4189271-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wasserstofferzeugung</subfield><subfield code="0">(DE-588)4189271-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishaq, Haris</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Dincer, Ibrahim</subfield><subfield code="t">Renewable Hydrogen Production</subfield><subfield code="d">San Diego : Elsevier,c2021</subfield><subfield code="z">9780323851763</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033607176</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6817938</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048226446 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T09:22:31Z |
institution | BVB |
isbn | 9780323851893 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033607176 |
oclc_num | 1290023721 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (384 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Elsevier |
record_format | marc |
spelling | Dincer, Ibrahim Verfasser aut Renewable Hydrogen Production San Diego Elsevier 2021 ©2022 1 Online-Ressource (384 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks 4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant 5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger Heat exchanger Wasserstofferzeugung (DE-588)4189271-9 gnd rswk-swf Wasserstofferzeugung (DE-588)4189271-9 s DE-604 Ishaq, Haris Sonstige oth Erscheint auch als Druck-Ausgabe Dincer, Ibrahim Renewable Hydrogen Production San Diego : Elsevier,c2021 9780323851763 |
spellingShingle | Dincer, Ibrahim Renewable Hydrogen Production Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks 4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant 5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger Heat exchanger Wasserstofferzeugung (DE-588)4189271-9 gnd |
subject_GND | (DE-588)4189271-9 |
title | Renewable Hydrogen Production |
title_auth | Renewable Hydrogen Production |
title_exact_search | Renewable Hydrogen Production |
title_full | Renewable Hydrogen Production |
title_fullStr | Renewable Hydrogen Production |
title_full_unstemmed | Renewable Hydrogen Production |
title_short | Renewable Hydrogen Production |
title_sort | renewable hydrogen production |
topic | Wasserstofferzeugung (DE-588)4189271-9 gnd |
topic_facet | Wasserstofferzeugung |
work_keys_str_mv | AT dinceribrahim renewablehydrogenproduction AT ishaqharis renewablehydrogenproduction |