Renewable Hydrogen Production

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dincer, Ibrahim (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: San Diego Elsevier 2021
Schlagworte:
Online-Zugang:DE-2070s
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV048226446
003 DE-604
005 20230301
007 cr|uuu---uuuuu
008 220517s2021 xx o|||| 00||| eng d
020 |a 9780323851893  |9 978-0-323-85189-3 
035 |a (ZDB-30-PQE)EBC6817938 
035 |a (ZDB-30-PAD)EBC6817938 
035 |a (ZDB-89-EBL)EBL6817938 
035 |a (OCoLC)1290023721 
035 |a (DE-599)BVBBV048226446 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-2070s 
082 0 |a 333.794 
084 |a ZP 4150  |0 (DE-625)157979:  |2 rvk 
100 1 |a Dincer, Ibrahim  |e Verfasser  |4 aut 
245 1 0 |a Renewable Hydrogen Production 
264 1 |a San Diego  |b Elsevier  |c 2021 
264 4 |c ©2022 
300 |a 1 Online-Ressource (384 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Description based on publisher supplied metadata and other sources 
505 8 |a Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks 
505 8 |a 4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant 
505 8 |a 5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy 
505 8 |a Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis 
505 8 |a Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger 
505 8 |a Heat exchanger 
650 0 7 |a Wasserstofferzeugung  |0 (DE-588)4189271-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Wasserstofferzeugung  |0 (DE-588)4189271-9  |D s 
689 0 |5 DE-604 
700 1 |a Ishaq, Haris  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Dincer, Ibrahim  |t Renewable Hydrogen Production  |d San Diego : Elsevier,c2021  |z 9780323851763 
912 |a ZDB-30-PQE 
943 1 |a oai:aleph.bib-bvb.de:BVB01-033607176 
966 e |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6817938  |l DE-2070s  |p ZDB-30-PQE  |q HWR_PDA_PQE_Kauf  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819313073595351041
any_adam_object
author Dincer, Ibrahim
author_facet Dincer, Ibrahim
author_role aut
author_sort Dincer, Ibrahim
author_variant i d id
building Verbundindex
bvnumber BV048226446
classification_rvk ZP 4150
collection ZDB-30-PQE
contents Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks
4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant
5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy
Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis
Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger
Heat exchanger
ctrlnum (ZDB-30-PQE)EBC6817938
(ZDB-30-PAD)EBC6817938
(ZDB-89-EBL)EBL6817938
(OCoLC)1290023721
(DE-599)BVBBV048226446
dewey-full 333.794
dewey-hundreds 300 - Social sciences
dewey-ones 333 - Economics of land and energy
dewey-raw 333.794
dewey-search 333.794
dewey-sort 3333.794
dewey-tens 330 - Economics
discipline Energietechnik
Wirtschaftswissenschaften
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10988nam a2200493zc 4500</leader><controlfield tag="001">BV048226446</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230301 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220517s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323851893</subfield><subfield code="9">978-0-323-85189-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6817938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6817938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6817938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1290023721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048226446</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">333.794</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 4150</subfield><subfield code="0">(DE-625)157979:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dincer, Ibrahim</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renewable Hydrogen Production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (384 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Heat exchanger</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserstofferzeugung</subfield><subfield code="0">(DE-588)4189271-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wasserstofferzeugung</subfield><subfield code="0">(DE-588)4189271-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishaq, Haris</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Dincer, Ibrahim</subfield><subfield code="t">Renewable Hydrogen Production</subfield><subfield code="d">San Diego : Elsevier,c2021</subfield><subfield code="z">9780323851763</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033607176</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6817938</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV048226446
illustrated Not Illustrated
indexdate 2024-12-24T09:22:31Z
institution BVB
isbn 9780323851893
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033607176
oclc_num 1290023721
open_access_boolean
owner DE-2070s
owner_facet DE-2070s
physical 1 Online-Ressource (384 Seiten)
psigel ZDB-30-PQE
ZDB-30-PQE HWR_PDA_PQE_Kauf
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher Elsevier
record_format marc
spelling Dincer, Ibrahim Verfasser aut
Renewable Hydrogen Production
San Diego Elsevier 2021
©2022
1 Online-Ressource (384 Seiten)
txt rdacontent
c rdamedia
cr rdacarrier
Description based on publisher supplied metadata and other sources
Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks
4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant
5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy
Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis
Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger
Heat exchanger
Wasserstofferzeugung (DE-588)4189271-9 gnd rswk-swf
Wasserstofferzeugung (DE-588)4189271-9 s
DE-604
Ishaq, Haris Sonstige oth
Erscheint auch als Druck-Ausgabe Dincer, Ibrahim Renewable Hydrogen Production San Diego : Elsevier,c2021 9780323851763
spellingShingle Dincer, Ibrahim
Renewable Hydrogen Production
Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks
4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant
5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy
Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis
Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger
Heat exchanger
Wasserstofferzeugung (DE-588)4189271-9 gnd
subject_GND (DE-588)4189271-9
title Renewable Hydrogen Production
title_auth Renewable Hydrogen Production
title_exact_search Renewable Hydrogen Production
title_full Renewable Hydrogen Production
title_fullStr Renewable Hydrogen Production
title_full_unstemmed Renewable Hydrogen Production
title_short Renewable Hydrogen Production
title_sort renewable hydrogen production
topic Wasserstofferzeugung (DE-588)4189271-9 gnd
topic_facet Wasserstofferzeugung
work_keys_str_mv AT dinceribrahim renewablehydrogenproduction
AT ishaqharis renewablehydrogenproduction