Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2020
|
Schriftenreihe: | SpringerBriefs in Finance Ser
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Inhaltsangabe:
- Intro
- Preface
- About This Book
- Contents
- 1 Why and When Should Quantile Regression Be Used?
- References
- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression
- 2.1 Energy Markets
- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis
- References
- 3 Quantile Regression: A Methodological Overview
- 3.1 Definition of Quantile and Conditional Quantile
- 3.2 Estimating the Quantile in the Univariate Case
- 3.3 Quantile Regression Estimation
- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation
- References
- 4 Cross-sectional Quantile Regression
- 4.1 Data Source
- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example
- 4.3 Quantile Regression in a Simple One-Covariate Model
- 4.4 Coefficient Interpretation
- 4.5 Quantile Regression in a Multiple-Covariate Model
- 4.6 Conditional Versus Unconditional Quantile Regression
- 4.7 Summarizing Remarks
- References
- 5 Time Series Quantile Regression
- 5.1 Data Source
- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example
- 5.3 Quantile Regression in a Simple One-Covariate Model
- 5.4 Coefficient Interpretation
- 5.5 Autoregressive Quantiles
- 5.6 Summarizing Remarks
- Reference
- 6 Goodness of Fit in Quantile Regression Models
- Reference
- 7 Novel Approaches in Quantile Regression
- 7.1 Nonparametric Quantile Regression
- 7.2 The Cross-Quantilogram for Time Series
- 7.2.1 The Cross-Quantilogram Definition
- 7.2.2 Q-Test for Directional Predictability
- 7.2.3 The Stationary Bootstrap
- 7.3 Quantile Regression Forests
- References
- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance
- Appendix Programs for Quantile Regression and Implementation in R.