Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2020
|
Schriftenreihe: | SpringerBriefs in Finance Ser
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048222602 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783030445041 |9 978-3-030-44504-1 | ||
035 | |a (ZDB-30-PQE)EBC6151482 | ||
035 | |a (ZDB-30-PAD)EBC6151482 | ||
035 | |a (ZDB-89-EBL)EBL6151482 | ||
035 | |a (OCoLC)1148207609 | ||
035 | |a (DE-599)BVBBV048222602 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
082 | 0 | |a 519.53599999999994 | |
100 | 1 | |a Uribe, Jorge M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantile Regression for Cross-Sectional and Time Series Data |b Applications in Energy Markets Using R. |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2020 | |
264 | 4 | |c ©2020 | |
300 | |a 1 Online-Ressource (67 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a SpringerBriefs in Finance Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- About This Book -- Contents -- 1 Why and When Should Quantile Regression Be Used? -- References -- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression -- 2.1 Energy Markets -- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis -- References -- 3 Quantile Regression: A Methodological Overview -- 3.1 Definition of Quantile and Conditional Quantile -- 3.2 Estimating the Quantile in the Univariate Case -- 3.3 Quantile Regression Estimation -- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation -- References -- 4 Cross-sectional Quantile Regression -- 4.1 Data Source -- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example -- 4.3 Quantile Regression in a Simple One-Covariate Model -- 4.4 Coefficient Interpretation -- 4.5 Quantile Regression in a Multiple-Covariate Model -- 4.6 Conditional Versus Unconditional Quantile Regression -- 4.7 Summarizing Remarks -- References -- 5 Time Series Quantile Regression -- 5.1 Data Source -- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example -- 5.3 Quantile Regression in a Simple One-Covariate Model -- 5.4 Coefficient Interpretation -- 5.5 Autoregressive Quantiles -- 5.6 Summarizing Remarks -- Reference -- 6 Goodness of Fit in Quantile Regression Models -- Reference -- 7 Novel Approaches in Quantile Regression -- 7.1 Nonparametric Quantile Regression -- 7.2 The Cross-Quantilogram for Time Series -- 7.2.1 The Cross-Quantilogram Definition -- 7.2.2 Q-Test for Directional Predictability -- 7.2.3 The Stationary Bootstrap -- 7.3 Quantile Regression Forests -- References -- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix Programs for Quantile Regression and Implementation in R. | |
650 | 4 | |a Quantile regression | |
700 | 1 | |a Guillen, Montserrat |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Uribe, Jorge M. |t Quantile Regression for Cross-Sectional and Time Series Data |d Cham : Springer International Publishing AG,c2020 |z 9783030445034 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033603335 |
Datensatz im Suchindex
_version_ | 1804184004129193984 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Uribe, Jorge M. |
author_facet | Uribe, Jorge M. |
author_role | aut |
author_sort | Uribe, Jorge M. |
author_variant | j m u jm jmu |
building | Verbundindex |
bvnumber | BV048222602 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- About This Book -- Contents -- 1 Why and When Should Quantile Regression Be Used? -- References -- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression -- 2.1 Energy Markets -- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis -- References -- 3 Quantile Regression: A Methodological Overview -- 3.1 Definition of Quantile and Conditional Quantile -- 3.2 Estimating the Quantile in the Univariate Case -- 3.3 Quantile Regression Estimation -- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation -- References -- 4 Cross-sectional Quantile Regression -- 4.1 Data Source -- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example -- 4.3 Quantile Regression in a Simple One-Covariate Model -- 4.4 Coefficient Interpretation -- 4.5 Quantile Regression in a Multiple-Covariate Model -- 4.6 Conditional Versus Unconditional Quantile Regression -- 4.7 Summarizing Remarks -- References -- 5 Time Series Quantile Regression -- 5.1 Data Source -- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example -- 5.3 Quantile Regression in a Simple One-Covariate Model -- 5.4 Coefficient Interpretation -- 5.5 Autoregressive Quantiles -- 5.6 Summarizing Remarks -- Reference -- 6 Goodness of Fit in Quantile Regression Models -- Reference -- 7 Novel Approaches in Quantile Regression -- 7.1 Nonparametric Quantile Regression -- 7.2 The Cross-Quantilogram for Time Series -- 7.2.1 The Cross-Quantilogram Definition -- 7.2.2 Q-Test for Directional Predictability -- 7.2.3 The Stationary Bootstrap -- 7.3 Quantile Regression Forests -- References -- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix Programs for Quantile Regression and Implementation in R. |
ctrlnum | (ZDB-30-PQE)EBC6151482 (ZDB-30-PAD)EBC6151482 (ZDB-89-EBL)EBL6151482 (OCoLC)1148207609 (DE-599)BVBBV048222602 |
dewey-full | 519.53599999999994 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.53599999999994 |
dewey-search | 519.53599999999994 |
dewey-sort | 3519.53599999999994 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03252nmm a2200385zc 4500</leader><controlfield tag="001">BV048222602</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030445041</subfield><subfield code="9">978-3-030-44504-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6151482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6151482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6151482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1148207609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048222602</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.53599999999994</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Uribe, Jorge M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantile Regression for Cross-Sectional and Time Series Data</subfield><subfield code="b">Applications in Energy Markets Using R.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (67 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SpringerBriefs in Finance Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- About This Book -- Contents -- 1 Why and When Should Quantile Regression Be Used? -- References -- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression -- 2.1 Energy Markets -- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis -- References -- 3 Quantile Regression: A Methodological Overview -- 3.1 Definition of Quantile and Conditional Quantile -- 3.2 Estimating the Quantile in the Univariate Case -- 3.3 Quantile Regression Estimation -- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation -- References -- 4 Cross-sectional Quantile Regression -- 4.1 Data Source -- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example -- 4.3 Quantile Regression in a Simple One-Covariate Model -- 4.4 Coefficient Interpretation -- 4.5 Quantile Regression in a Multiple-Covariate Model -- 4.6 Conditional Versus Unconditional Quantile Regression -- 4.7 Summarizing Remarks -- References -- 5 Time Series Quantile Regression -- 5.1 Data Source -- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example -- 5.3 Quantile Regression in a Simple One-Covariate Model -- 5.4 Coefficient Interpretation -- 5.5 Autoregressive Quantiles -- 5.6 Summarizing Remarks -- Reference -- 6 Goodness of Fit in Quantile Regression Models -- Reference -- 7 Novel Approaches in Quantile Regression -- 7.1 Nonparametric Quantile Regression -- 7.2 The Cross-Quantilogram for Time Series -- 7.2.1 The Cross-Quantilogram Definition -- 7.2.2 Q-Test for Directional Predictability -- 7.2.3 The Stationary Bootstrap -- 7.3 Quantile Regression Forests -- References -- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix Programs for Quantile Regression and Implementation in R.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantile regression</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guillen, Montserrat</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Uribe, Jorge M.</subfield><subfield code="t">Quantile Regression for Cross-Sectional and Time Series Data</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030445034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033603335</subfield></datafield></record></collection> |
id | DE-604.BV048222602 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:37Z |
indexdate | 2024-07-10T09:32:26Z |
institution | BVB |
isbn | 9783030445041 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033603335 |
oclc_num | 1148207609 |
open_access_boolean | |
physical | 1 Online-Ressource (67 pages) |
psigel | ZDB-30-PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | SpringerBriefs in Finance Ser |
spelling | Uribe, Jorge M. Verfasser aut Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R. Cham Springer International Publishing AG 2020 ©2020 1 Online-Ressource (67 pages) txt rdacontent c rdamedia cr rdacarrier SpringerBriefs in Finance Ser Description based on publisher supplied metadata and other sources Intro -- Preface -- About This Book -- Contents -- 1 Why and When Should Quantile Regression Be Used? -- References -- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression -- 2.1 Energy Markets -- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis -- References -- 3 Quantile Regression: A Methodological Overview -- 3.1 Definition of Quantile and Conditional Quantile -- 3.2 Estimating the Quantile in the Univariate Case -- 3.3 Quantile Regression Estimation -- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation -- References -- 4 Cross-sectional Quantile Regression -- 4.1 Data Source -- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example -- 4.3 Quantile Regression in a Simple One-Covariate Model -- 4.4 Coefficient Interpretation -- 4.5 Quantile Regression in a Multiple-Covariate Model -- 4.6 Conditional Versus Unconditional Quantile Regression -- 4.7 Summarizing Remarks -- References -- 5 Time Series Quantile Regression -- 5.1 Data Source -- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example -- 5.3 Quantile Regression in a Simple One-Covariate Model -- 5.4 Coefficient Interpretation -- 5.5 Autoregressive Quantiles -- 5.6 Summarizing Remarks -- Reference -- 6 Goodness of Fit in Quantile Regression Models -- Reference -- 7 Novel Approaches in Quantile Regression -- 7.1 Nonparametric Quantile Regression -- 7.2 The Cross-Quantilogram for Time Series -- 7.2.1 The Cross-Quantilogram Definition -- 7.2.2 Q-Test for Directional Predictability -- 7.2.3 The Stationary Bootstrap -- 7.3 Quantile Regression Forests -- References -- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix Programs for Quantile Regression and Implementation in R. Quantile regression Guillen, Montserrat Sonstige oth Erscheint auch als Druck-Ausgabe Uribe, Jorge M. Quantile Regression for Cross-Sectional and Time Series Data Cham : Springer International Publishing AG,c2020 9783030445034 |
spellingShingle | Uribe, Jorge M. Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R. Intro -- Preface -- About This Book -- Contents -- 1 Why and When Should Quantile Regression Be Used? -- References -- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression -- 2.1 Energy Markets -- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis -- References -- 3 Quantile Regression: A Methodological Overview -- 3.1 Definition of Quantile and Conditional Quantile -- 3.2 Estimating the Quantile in the Univariate Case -- 3.3 Quantile Regression Estimation -- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation -- References -- 4 Cross-sectional Quantile Regression -- 4.1 Data Source -- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example -- 4.3 Quantile Regression in a Simple One-Covariate Model -- 4.4 Coefficient Interpretation -- 4.5 Quantile Regression in a Multiple-Covariate Model -- 4.6 Conditional Versus Unconditional Quantile Regression -- 4.7 Summarizing Remarks -- References -- 5 Time Series Quantile Regression -- 5.1 Data Source -- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example -- 5.3 Quantile Regression in a Simple One-Covariate Model -- 5.4 Coefficient Interpretation -- 5.5 Autoregressive Quantiles -- 5.6 Summarizing Remarks -- Reference -- 6 Goodness of Fit in Quantile Regression Models -- Reference -- 7 Novel Approaches in Quantile Regression -- 7.1 Nonparametric Quantile Regression -- 7.2 The Cross-Quantilogram for Time Series -- 7.2.1 The Cross-Quantilogram Definition -- 7.2.2 Q-Test for Directional Predictability -- 7.2.3 The Stationary Bootstrap -- 7.3 Quantile Regression Forests -- References -- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix Programs for Quantile Regression and Implementation in R. Quantile regression |
title | Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R. |
title_auth | Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R. |
title_exact_search | Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R. |
title_exact_search_txtP | Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R. |
title_full | Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R. |
title_fullStr | Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R. |
title_full_unstemmed | Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R. |
title_short | Quantile Regression for Cross-Sectional and Time Series Data |
title_sort | quantile regression for cross sectional and time series data applications in energy markets using r |
title_sub | Applications in Energy Markets Using R. |
topic | Quantile regression |
topic_facet | Quantile regression |
work_keys_str_mv | AT uribejorgem quantileregressionforcrosssectionalandtimeseriesdataapplicationsinenergymarketsusingr AT guillenmontserrat quantileregressionforcrosssectionalandtimeseriesdataapplicationsinenergymarketsusingr |