Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Uribe, Jorge M. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cham Springer International Publishing AG 2020
Schriftenreihe:SpringerBriefs in Finance Ser
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV048222602
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 220516s2020 |||| o||u| ||||||eng d
020 |a 9783030445041  |9 978-3-030-44504-1 
035 |a (ZDB-30-PQE)EBC6151482 
035 |a (ZDB-30-PAD)EBC6151482 
035 |a (ZDB-89-EBL)EBL6151482 
035 |a (OCoLC)1148207609 
035 |a (DE-599)BVBBV048222602 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
082 0 |a 519.53599999999994 
100 1 |a Uribe, Jorge M.  |e Verfasser  |4 aut 
245 1 0 |a Quantile Regression for Cross-Sectional and Time Series Data  |b Applications in Energy Markets Using R. 
264 1 |a Cham  |b Springer International Publishing AG  |c 2020 
264 4 |c ©2020 
300 |a 1 Online-Ressource (67 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a SpringerBriefs in Finance Ser 
500 |a Description based on publisher supplied metadata and other sources 
505 8 |a Intro -- Preface -- About This Book -- Contents -- 1 Why and When Should Quantile Regression Be Used? -- References -- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression -- 2.1 Energy Markets -- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis -- References -- 3 Quantile Regression: A Methodological Overview -- 3.1 Definition of Quantile and Conditional Quantile -- 3.2 Estimating the Quantile in the Univariate Case -- 3.3 Quantile Regression Estimation -- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation -- References -- 4 Cross-sectional Quantile Regression -- 4.1 Data Source -- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example -- 4.3 Quantile Regression in a Simple One-Covariate Model -- 4.4 Coefficient Interpretation -- 4.5 Quantile Regression in a Multiple-Covariate Model -- 4.6 Conditional Versus Unconditional Quantile Regression -- 4.7 Summarizing Remarks -- References -- 5 Time Series Quantile Regression -- 5.1 Data Source -- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example -- 5.3 Quantile Regression in a Simple One-Covariate Model -- 5.4 Coefficient Interpretation -- 5.5 Autoregressive Quantiles -- 5.6 Summarizing Remarks -- Reference -- 6 Goodness of Fit in Quantile Regression Models -- Reference -- 7 Novel Approaches in Quantile Regression -- 7.1 Nonparametric Quantile Regression -- 7.2 The Cross-Quantilogram for Time Series -- 7.2.1 The Cross-Quantilogram Definition -- 7.2.2 Q-Test for Directional Predictability -- 7.2.3 The Stationary Bootstrap -- 7.3 Quantile Regression Forests -- References -- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix Programs for Quantile Regression and Implementation in R. 
650 4 |a Quantile regression 
700 1 |a Guillen, Montserrat  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Uribe, Jorge M.  |t Quantile Regression for Cross-Sectional and Time Series Data  |d Cham : Springer International Publishing AG,c2020  |z 9783030445034 
912 |a ZDB-30-PQE 
999 |a oai:aleph.bib-bvb.de:BVB01-033603335 

Datensatz im Suchindex

_version_ 1804184004129193984
adam_txt
any_adam_object
any_adam_object_boolean
author Uribe, Jorge M.
author_facet Uribe, Jorge M.
author_role aut
author_sort Uribe, Jorge M.
author_variant j m u jm jmu
building Verbundindex
bvnumber BV048222602
collection ZDB-30-PQE
contents Intro -- Preface -- About This Book -- Contents -- 1 Why and When Should Quantile Regression Be Used? -- References -- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression -- 2.1 Energy Markets -- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis -- References -- 3 Quantile Regression: A Methodological Overview -- 3.1 Definition of Quantile and Conditional Quantile -- 3.2 Estimating the Quantile in the Univariate Case -- 3.3 Quantile Regression Estimation -- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation -- References -- 4 Cross-sectional Quantile Regression -- 4.1 Data Source -- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example -- 4.3 Quantile Regression in a Simple One-Covariate Model -- 4.4 Coefficient Interpretation -- 4.5 Quantile Regression in a Multiple-Covariate Model -- 4.6 Conditional Versus Unconditional Quantile Regression -- 4.7 Summarizing Remarks -- References -- 5 Time Series Quantile Regression -- 5.1 Data Source -- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example -- 5.3 Quantile Regression in a Simple One-Covariate Model -- 5.4 Coefficient Interpretation -- 5.5 Autoregressive Quantiles -- 5.6 Summarizing Remarks -- Reference -- 6 Goodness of Fit in Quantile Regression Models -- Reference -- 7 Novel Approaches in Quantile Regression -- 7.1 Nonparametric Quantile Regression -- 7.2 The Cross-Quantilogram for Time Series -- 7.2.1 The Cross-Quantilogram Definition -- 7.2.2 Q-Test for Directional Predictability -- 7.2.3 The Stationary Bootstrap -- 7.3 Quantile Regression Forests -- References -- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix Programs for Quantile Regression and Implementation in R.
ctrlnum (ZDB-30-PQE)EBC6151482
(ZDB-30-PAD)EBC6151482
(ZDB-89-EBL)EBL6151482
(OCoLC)1148207609
(DE-599)BVBBV048222602
dewey-full 519.53599999999994
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.53599999999994
dewey-search 519.53599999999994
dewey-sort 3519.53599999999994
dewey-tens 510 - Mathematics
discipline Mathematik
discipline_str_mv Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03252nmm a2200385zc 4500</leader><controlfield tag="001">BV048222602</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030445041</subfield><subfield code="9">978-3-030-44504-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6151482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6151482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6151482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1148207609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048222602</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.53599999999994</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Uribe, Jorge M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantile Regression for Cross-Sectional and Time Series Data</subfield><subfield code="b">Applications in Energy Markets Using R.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (67 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SpringerBriefs in Finance Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- About This Book -- Contents -- 1 Why and When Should Quantile Regression Be Used? -- References -- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression -- 2.1 Energy Markets -- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis -- References -- 3 Quantile Regression: A Methodological Overview -- 3.1 Definition of Quantile and Conditional Quantile -- 3.2 Estimating the Quantile in the Univariate Case -- 3.3 Quantile Regression Estimation -- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation -- References -- 4 Cross-sectional Quantile Regression -- 4.1 Data Source -- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example -- 4.3 Quantile Regression in a Simple One-Covariate Model -- 4.4 Coefficient Interpretation -- 4.5 Quantile Regression in a Multiple-Covariate Model -- 4.6 Conditional Versus Unconditional Quantile Regression -- 4.7 Summarizing Remarks -- References -- 5 Time Series Quantile Regression -- 5.1 Data Source -- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example -- 5.3 Quantile Regression in a Simple One-Covariate Model -- 5.4 Coefficient Interpretation -- 5.5 Autoregressive Quantiles -- 5.6 Summarizing Remarks -- Reference -- 6 Goodness of Fit in Quantile Regression Models -- Reference -- 7 Novel Approaches in Quantile Regression -- 7.1 Nonparametric Quantile Regression -- 7.2 The Cross-Quantilogram for Time Series -- 7.2.1 The Cross-Quantilogram Definition -- 7.2.2 Q-Test for Directional Predictability -- 7.2.3 The Stationary Bootstrap -- 7.3 Quantile Regression Forests -- References -- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix Programs for Quantile Regression and Implementation in R.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantile regression</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guillen, Montserrat</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Uribe, Jorge M.</subfield><subfield code="t">Quantile Regression for Cross-Sectional and Time Series Data</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030445034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033603335</subfield></datafield></record></collection>
id DE-604.BV048222602
illustrated Not Illustrated
index_date 2024-07-03T19:50:37Z
indexdate 2024-07-10T09:32:26Z
institution BVB
isbn 9783030445041
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033603335
oclc_num 1148207609
open_access_boolean
physical 1 Online-Ressource (67 pages)
psigel ZDB-30-PQE
publishDate 2020
publishDateSearch 2020
publishDateSort 2020
publisher Springer International Publishing AG
record_format marc
series2 SpringerBriefs in Finance Ser
spelling Uribe, Jorge M. Verfasser aut
Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
Cham Springer International Publishing AG 2020
©2020
1 Online-Ressource (67 pages)
txt rdacontent
c rdamedia
cr rdacarrier
SpringerBriefs in Finance Ser
Description based on publisher supplied metadata and other sources
Intro -- Preface -- About This Book -- Contents -- 1 Why and When Should Quantile Regression Be Used? -- References -- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression -- 2.1 Energy Markets -- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis -- References -- 3 Quantile Regression: A Methodological Overview -- 3.1 Definition of Quantile and Conditional Quantile -- 3.2 Estimating the Quantile in the Univariate Case -- 3.3 Quantile Regression Estimation -- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation -- References -- 4 Cross-sectional Quantile Regression -- 4.1 Data Source -- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example -- 4.3 Quantile Regression in a Simple One-Covariate Model -- 4.4 Coefficient Interpretation -- 4.5 Quantile Regression in a Multiple-Covariate Model -- 4.6 Conditional Versus Unconditional Quantile Regression -- 4.7 Summarizing Remarks -- References -- 5 Time Series Quantile Regression -- 5.1 Data Source -- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example -- 5.3 Quantile Regression in a Simple One-Covariate Model -- 5.4 Coefficient Interpretation -- 5.5 Autoregressive Quantiles -- 5.6 Summarizing Remarks -- Reference -- 6 Goodness of Fit in Quantile Regression Models -- Reference -- 7 Novel Approaches in Quantile Regression -- 7.1 Nonparametric Quantile Regression -- 7.2 The Cross-Quantilogram for Time Series -- 7.2.1 The Cross-Quantilogram Definition -- 7.2.2 Q-Test for Directional Predictability -- 7.2.3 The Stationary Bootstrap -- 7.3 Quantile Regression Forests -- References -- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix Programs for Quantile Regression and Implementation in R.
Quantile regression
Guillen, Montserrat Sonstige oth
Erscheint auch als Druck-Ausgabe Uribe, Jorge M. Quantile Regression for Cross-Sectional and Time Series Data Cham : Springer International Publishing AG,c2020 9783030445034
spellingShingle Uribe, Jorge M.
Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
Intro -- Preface -- About This Book -- Contents -- 1 Why and When Should Quantile Regression Be Used? -- References -- 2 A Case Study: Modeling Energy Markets by the Means of Quantile Regression -- 2.1 Energy Markets -- 2.2 Energy and Quantile Regression: An Overview of Existing Analysis -- References -- 3 Quantile Regression: A Methodological Overview -- 3.1 Definition of Quantile and Conditional Quantile -- 3.2 Estimating the Quantile in the Univariate Case -- 3.3 Quantile Regression Estimation -- 3.4 Quantile Regression Estimation Versus Weighted Quantile Regression Estimation -- References -- 4 Cross-sectional Quantile Regression -- 4.1 Data Source -- 4.2 Weighted Versus Unweighted Linear Regression: A Simple Example -- 4.3 Quantile Regression in a Simple One-Covariate Model -- 4.4 Coefficient Interpretation -- 4.5 Quantile Regression in a Multiple-Covariate Model -- 4.6 Conditional Versus Unconditional Quantile Regression -- 4.7 Summarizing Remarks -- References -- 5 Time Series Quantile Regression -- 5.1 Data Source -- 5.2 Natural Gas Prices as a Determinant of Electricity Prices-An OLS Example -- 5.3 Quantile Regression in a Simple One-Covariate Model -- 5.4 Coefficient Interpretation -- 5.5 Autoregressive Quantiles -- 5.6 Summarizing Remarks -- Reference -- 6 Goodness of Fit in Quantile Regression Models -- Reference -- 7 Novel Approaches in Quantile Regression -- 7.1 Nonparametric Quantile Regression -- 7.2 The Cross-Quantilogram for Time Series -- 7.2.1 The Cross-Quantilogram Definition -- 7.2.2 Q-Test for Directional Predictability -- 7.2.3 The Stationary Bootstrap -- 7.3 Quantile Regression Forests -- References -- 8 What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix Programs for Quantile Regression and Implementation in R.
Quantile regression
title Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
title_auth Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
title_exact_search Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
title_exact_search_txtP Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
title_full Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
title_fullStr Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
title_full_unstemmed Quantile Regression for Cross-Sectional and Time Series Data Applications in Energy Markets Using R.
title_short Quantile Regression for Cross-Sectional and Time Series Data
title_sort quantile regression for cross sectional and time series data applications in energy markets using r
title_sub Applications in Energy Markets Using R.
topic Quantile regression
topic_facet Quantile regression
work_keys_str_mv AT uribejorgem quantileregressionforcrosssectionalandtimeseriesdataapplicationsinenergymarketsusingr
AT guillenmontserrat quantileregressionforcrosssectionalandtimeseriesdataapplicationsinenergymarketsusingr