Harmonic Modeling of Voltage Source Converters Using Basic Numerical Methods

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lian, Ryan Kuo-Lung (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Newark John Wiley & Sons, Incorporated 2022
Schriftenreihe:IEEE Press Ser
Online-Zugang:DE-573
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Acknowledgments
  • Symbols
  • Chapter 1 Fundamental Theory
  • 1.1 Background
  • 1.2 Definition of Harmonics
  • 1.3 Fourier Series
  • 1.3.1 Trigonometric Form
  • 1.3.2 Phasor Form
  • 1.3.3 Exponential Form
  • 1.4 Waveform Symmetry
  • 1.4.1 Even Symmetry
  • 1.4.2 Odd Symmetry
  • 1.4.3 Half‐Wave Symmetry
  • 1.5 Phase Sequence of Harmonics
  • 1.6 Frequency Domain and Harmonic Domain
  • 1.7 Power Definitions
  • 1.7.1 Average Power
  • 1.7.2 Apparent and Reactive Power
  • 1.8 Harmonic Indices
  • 1.8.1 Total Harmonic Distortion (THD)
  • 1.8.2 Total Demand Distortion (TDD)
  • 1.8.3 True Power Factor
  • 1.9 Detrimental Effects of Harmonics
  • 1.9.1 Resonance
  • 1.9.2 Misoperations of Meters and Relays
  • 1.9.3 Harmonics Impact on Motors
  • 1.9.4 Harmonics Impact on Transformers
  • 1.10 Characteristic Harmonic and Non‐Characteristic Harmonic
  • 1.11 Harmonic Current Injection Method
  • 1.12 Steady‐State vs. Transient Response
  • 1.13 Steady‐State Modeling
  • 1.14 Large‐Signal Modeling vs. Small‐Signal Modeling
  • 1.15 Discussion of IEEE Standard (STD) 519
  • 1.16 Supraharmonics
  • Chapter 2 Power Electronics Basics
  • 2.1 Some Basics
  • 2.2 Semiconductors vs. Wide Bandgap Semiconductors
  • 2.3 Types of Static Switches
  • 2.3.1 Uncontrolled Static Switch
  • 2.3.2 Semi‐Controllable Switches
  • 2.3.3 Controlled Switch
  • 2.4 Combination of Switches
  • 2.5 Classification Based on Commutation Process
  • 2.6 Voltage Source Converter vs. Current Source Converter
  • Chapter 3 Basic Numerical Iterative Methods
  • 3.1 Definition of Error
  • 3.2 The Gauss-Seidel Method
  • 3.3 Predictor‐Corrector
  • 3.4 Newton's Method
  • 3.4.1 Root Finding
  • 3.4.2 Numerical Integration
  • 3.4.3 Power Flow
  • 3.4.4 Harmonic Power Flow
  • 3.4.5 Shooting Method
  • 3.4.6 Advantages of Newton's Method
  • 3.4.7 Quasi‐Newton Method
  • 3.4.8 Limitation of Newton's Method
  • 3.5 PSO
  • Chapter 4 Matrix Exponential
  • 4.1 Definition of Matrix Exponential
  • 4.2 Evaluation of Matrix Exponential
  • 4.2.1 Inverse Laplace Transform
  • 4.2.2 Cayley-Hamilton Method
  • 4.2.3 Padé Approximation
  • 4.2.4 Scaling and Squaring
  • 4.3 Krylov Subspace Method
  • 4.4 Krylov Space Method with Restarting
  • 4.5 Application of Augmented Matrix on DC‐DC Converters
  • 4.6 Runge-Kutta Methods
  • Chapter 5 Modeling of Voltage Source Converters
  • 5.1 Single‐Phase Two‐Level VSCs
  • 5.1.1 Switching Functions
  • 5.1.2 Switched Circuits
  • 5.2 Three‐Phase Two‐Level VSCs
  • 5.3 Three‐Phase Multilevel Voltage Source Converter
  • 5.3.1 Multilevel PWM
  • 5.3.2 Diode Clamped Multilevel VSCs
  • 5.3.3 Flying Capacitor Multilevel VSCs
  • 5.3.4 Cascaded Multi‐Level VSCs
  • 5.3.5 Modular Multi‐Level VSC
  • Chapter 6 Frequency Coupling Matrices
  • 6.1 Construction of FCM in the Harmonic Domain
  • 6.2 Construction of FCM in the Time Domain
  • Chapter 7 General Control Approaches of a VSC
  • 7.1 Reference Frame
  • 7.1.1 Stationary‐abc Frame
  • 7.1.2 Stationary‐&lt
  • 3:spiinlinemath 0:display&amp
  • equals
  • "inline" 0:overflow&amp
  • equals
  • "scroll" &gt
  • αβ Frame
  • 7.1.3 Synchronous‐&lt
  • 3:spiinlinemath 0:display&amp
  • equals
  • "inline" 0:overflow&amp
  • equals
  • "scroll" &gt
  • dq Frame
  • 7.1.4 Phase‐Locked Loop
  • 7.2 Control Strategies
  • 7.2.1 Vector‐Current Controller
  • 7.2.2 Direct Power Controller
  • 7.2.3 DC‐bus Voltage Controller
  • 7.2.4 Circulating Current Controller
  • Chapter 8 Generalized Steady‐State Solution Procedure for Closed‐Loop Converter Systems
  • 8.1 Introduction
  • 8.2 Generalized Procedure
  • 8.2.1 Step 1: Determine How and Where to Break the Loop
  • 8.2.2 Step 2: Check if the Calculation Flows of the Broken System are Feasible
  • 8.2.3 Step 3: Determine What Domain of Each Component in the System Should be Modeled
  • 8.2.4 Step 4: Formulate the Mismatch Equations
  • 8.2.5 Step 5: Iterate to Find the Solution
  • 8.3 Previously Proposed Methods Derived from the Proposed Solution Procedures
  • 8.3.1 Steady‐State Methods Derived from Loop‐Breaking 1 Method
  • 8.3.2 Steady‐State Methods Derived from Loop‐Breaking 2 Method
  • 8.4 The Loop‐Breaking 3 Method
  • Chapter 9 Loop‐Breaking 1 Method
  • 9.1 A Typical Two‐Level VSC with AC Current Control and DC Voltage Control
  • 9.2 Loop‐Breaking 1 Method for a Two‐Level VSC
  • 9.2.1 Block 1
  • 9.2.2 Current Controller Block
  • 9.2.3 Voltage Controller Block
  • 9.3 Solution Flow Diagram
  • 9.3.1 Initialization
  • 9.3.2 Jacobian Matrix
  • 9.3.3 Number of Modulating Voltage Harmonics to be Included
  • Chapter 10 Loop‐Breaking 2 Method for Solving a VSC
  • 10.1 Modeling for a Closed‐Loop DC‐DC Converter
  • 10.1.1 Model of the Buck Converter
  • 10.1.2 Constraints of Steady‐State
  • 10.1.3 Switching Time Constraints
  • 10.1.4 Solution Flow Diagram
  • 10.2 Two‐Level VSC Modeling: Open‐Loop Equations
  • 10.2.1 Steady‐State Constraints
  • 10.2.2 Switching Time Constraints
  • 10.2.3 Solution Flow Diagram
  • 10.2.4 Initialization
  • 10.2.5 Jacobian Matrix
  • 10.3 Comparison Between the LB 1 and LB 2 Methods
  • 10.3.1 Case #1: Balanced System
  • 10.3.2 Case #2: Unbalanced System with AC Waveform Exhibiting Half‐Wave Symmetry
  • 10.3.3 Case #3: Unbalanced System, No Waveform Symmetry
  • 10.4 Large‐Signal Modeling for Line‐Commutated Power Converter
  • 10.4.1 Discontinuous Conduction Mode
  • 10.4.2 Continuous Conduction Mode
  • 10.4.3 Steady‐State Constraint Equations
  • 10.4.4 General Comments
  • Chapter 11 Loop‐Breaking 3 Method
  • 11.1 OpenDSS
  • 11.2 Interfacing OpenDSS with MATLAB
  • 11.3 Interfacing OpenDSS with Harmonic Models of VSCs
  • Chapter 12 Small‐Signal Harmonic Model of a VSC
  • 12.1 Problem Statement
  • 12.2 Gauss-Seidel LB 3 and Newton LB 3
  • 12.2.1 Current Injection Method
  • 12.2.2 Norton Circuit Method
  • 12.3 Small‐Signal Analysis of DC‐DC Converter
  • 12.4 Small‐Signal Analysis of a Two‐Level VSC
  • 12.4.1 Approach from Section 12.3
  • 12.4.2 Simpler Approach
  • Chapter 13 Parameter Estimation for a Single VSC
  • 13.1 Background on Parameter Estimation
  • 13.2 Parameter Estimator Based on White‐Box‐and‐Black‐Box Models
  • 13.3 Estimation Validations
  • 13.3.1 Experimental Validation
  • 13.3.2 PSCAD/EMTDC Validation
  • Chapter 14 Parameter Estimation for Multiple VSCs with Domain Adaptation
  • 14.1 Introduction of Deep Learning
  • 14.2 Domain Adaptation
  • 14.3 Parameter Estimation for Multiple VSCs
  • 14.4 Notations for DA
  • 14.5 Supervised Domain Adaptation for Regression
  • 14.6 Supervised Domain Adaptation for Classification
  • 14.7 Test Setup
  • 14.7.1 Data Generator
  • 14.7.2 Data Preprocessing
  • 14.8 Performance Metrics
  • 14.8.1 R square (Regression)
  • 14.8.2 Mean Absolute Percentage Error, MAPE (Regression)
  • 14.8.3 Accuracy (Classification)
  • 14.8.4 F1 score (Classification)
  • 14.9 Test Results
  • 14.9.1 Classification Task on Multiple VSC
  • 14.9.2 Regression Task on Multiple VSC
  • 14.10 Software for Running the Codes
  • 14.11 Implementation of Domain Adaptation
  • 14.11.1 Data Generation
  • 14.11.2 Regression
  • 14.11.3 Classification Network
  • References
  • Index
  • EULA.