Metal Additive Manufacturing
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2022
|
Online-Zugang: | DE-858 DE-Aug4 Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048220946 | ||
003 | DE-604 | ||
005 | 20230510 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781119210849 |9 978-1-119-21084-9 | ||
020 | |a 9781119210801 |9 978-1-119-21080-1 | ||
035 | |a (ZDB-30-PQE)EBC6787673 | ||
035 | |a (ZDB-30-PAD)EBC6787673 | ||
035 | |a (ZDB-89-EBL)EBL6787673 | ||
035 | |a (OCoLC)1281970404 | ||
035 | |a (DE-599)BVBBV048220946 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-858 |a DE-Aug4 | ||
082 | 0 | |a 621.988 | |
100 | 1 | |a Sarker, Dyuti |e Verfasser |4 aut | |
245 | 1 | 0 | |a Metal Additive Manufacturing |
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (627 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF) | |
505 | 8 | |a 3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED. | |
505 | 8 | |a 4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary | |
505 | 8 | |a References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength | |
505 | 8 | |a 8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing | |
505 | 8 | |a 10.1.1 Integrated Topological and Functional Optimization DfAM. | |
700 | 1 | |a Toyserkani, Ehsan |e Sonstige |4 oth | |
700 | 1 | |a Obehi Ibhadode, Osezua |e Sonstige |4 oth | |
700 | 1 | |a Liravi, Farzad |e Sonstige |4 oth | |
700 | 1 | |a Russo, Paola |e Sonstige |4 oth | |
700 | 1 | |a Taherkhani, Katayoon |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Sarker, Dyuti |t Metal Additive Manufacturing |d Newark : John Wiley & Sons, Incorporated,c2022 |z 9781119210788 |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801 |x Verlag |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-35-WIC | ||
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801 |l DE-858 |p ZDB-35-WIC |q FCO_PDA_WIC_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801 |l DE-Aug4 |p ZDB-35-WIC |q FHA_PDA_WIC_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2646299 |
---|---|
DE-BY-TUM_local_url | Verlag https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6787673 Aggregator https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801 |
_version_ | 1816714802900238336 |
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sarker, Dyuti |
author_facet | Sarker, Dyuti |
author_role | aut |
author_sort | Sarker, Dyuti |
author_variant | d s ds |
building | Verbundindex |
bvnumber | BV048220946 |
collection | ZDB-30-PQE ZDB-35-WIC |
contents | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF) 3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED. 4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength 8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing 10.1.1 Integrated Topological and Functional Optimization DfAM. |
ctrlnum | (ZDB-30-PQE)EBC6787673 (ZDB-30-PAD)EBC6787673 (ZDB-89-EBL)EBL6787673 (OCoLC)1281970404 (DE-599)BVBBV048220946 |
dewey-full | 621.988 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.988 |
dewey-search | 621.988 |
dewey-sort | 3621.988 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Werkstoffwissenschaften / Fertigungstechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048220946</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230510</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119210849</subfield><subfield code="9">978-1-119-21084-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119210801</subfield><subfield code="9">978-1-119-21080-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6787673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6787673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6787673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1281970404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048220946</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.988</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sarker, Dyuti</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal Additive Manufacturing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (627 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.1.1 Integrated Topological and Functional Optimization DfAM.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toyserkani, Ehsan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Obehi Ibhadode, Osezua</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liravi, Farzad</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Paola</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taherkhani, Katayoon</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Sarker, Dyuti</subfield><subfield code="t">Metal Additive Manufacturing</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2022</subfield><subfield code="z">9781119210788</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FCO_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FHA_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048220946 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-11-25T18:02:39Z |
institution | BVB |
isbn | 9781119210849 9781119210801 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033601684 |
oclc_num | 1281970404 |
open_access_boolean | |
owner | DE-858 DE-Aug4 |
owner_facet | DE-858 DE-Aug4 |
physical | 1 Online-Ressource (627 Seiten) |
psigel | ZDB-30-PQE ZDB-35-WIC ZDB-35-WIC FCO_PDA_WIC_Kauf ZDB-35-WIC FHA_PDA_WIC_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spellingShingle | Sarker, Dyuti Metal Additive Manufacturing Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF) 3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED. 4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength 8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing 10.1.1 Integrated Topological and Functional Optimization DfAM. |
title | Metal Additive Manufacturing |
title_auth | Metal Additive Manufacturing |
title_exact_search | Metal Additive Manufacturing |
title_exact_search_txtP | Metal Additive Manufacturing |
title_full | Metal Additive Manufacturing |
title_fullStr | Metal Additive Manufacturing |
title_full_unstemmed | Metal Additive Manufacturing |
title_short | Metal Additive Manufacturing |
title_sort | metal additive manufacturing |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801 |
work_keys_str_mv | AT sarkerdyuti metaladditivemanufacturing AT toyserkaniehsan metaladditivemanufacturing AT obehiibhadodeosezua metaladditivemanufacturing AT liravifarzad metaladditivemanufacturing AT russopaola metaladditivemanufacturing AT taherkhanikatayoon metaladditivemanufacturing |