Metal Additive Manufacturing

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sarker, Dyuti (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Newark John Wiley & Sons, Incorporated 2022
Online-Zugang:DE-858
DE-Aug4
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV048220946
003 DE-604
005 20230510
007 cr|uuu---uuuuu
008 220516s2022 |||| o||u| ||||||eng d
020 |a 9781119210849  |9 978-1-119-21084-9 
020 |a 9781119210801  |9 978-1-119-21080-1 
035 |a (ZDB-30-PQE)EBC6787673 
035 |a (ZDB-30-PAD)EBC6787673 
035 |a (ZDB-89-EBL)EBL6787673 
035 |a (OCoLC)1281970404 
035 |a (DE-599)BVBBV048220946 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-858  |a DE-Aug4 
082 0 |a 621.988 
100 1 |a Sarker, Dyuti  |e Verfasser  |4 aut 
245 1 0 |a Metal Additive Manufacturing 
264 1 |a Newark  |b John Wiley & Sons, Incorporated  |c 2022 
264 4 |c ©2022 
300 |a 1 Online-Ressource (627 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Description based on publisher supplied metadata and other sources 
505 8 |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF) 
505 8 |a 3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED. 
505 8 |a 4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary 
505 8 |a References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength 
505 8 |a 8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing 
505 8 |a 10.1.1 Integrated Topological and Functional Optimization DfAM. 
700 1 |a Toyserkani, Ehsan  |e Sonstige  |4 oth 
700 1 |a Obehi Ibhadode, Osezua  |e Sonstige  |4 oth 
700 1 |a Liravi, Farzad  |e Sonstige  |4 oth 
700 1 |a Russo, Paola  |e Sonstige  |4 oth 
700 1 |a Taherkhani, Katayoon  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Sarker, Dyuti  |t Metal Additive Manufacturing  |d Newark : John Wiley & Sons, Incorporated,c2022  |z 9781119210788 
856 4 0 |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801  |x Verlag  |3 Volltext 
912 |a ZDB-30-PQE  |a ZDB-35-WIC 
966 e |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801  |l DE-858  |p ZDB-35-WIC  |q FCO_PDA_WIC_Kauf  |x Verlag  |3 Volltext 
966 e |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801  |l DE-Aug4  |p ZDB-35-WIC  |q FHA_PDA_WIC_Kauf  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2646299
DE-BY-TUM_local_url Verlag
https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6787673
Aggregator
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801
_version_ 1816714802900238336
adam_text
adam_txt
any_adam_object
any_adam_object_boolean
author Sarker, Dyuti
author_facet Sarker, Dyuti
author_role aut
author_sort Sarker, Dyuti
author_variant d s ds
building Verbundindex
bvnumber BV048220946
collection ZDB-30-PQE
ZDB-35-WIC
contents Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF)
3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED.
4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary
References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength
8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing
10.1.1 Integrated Topological and Functional Optimization DfAM.
ctrlnum (ZDB-30-PQE)EBC6787673
(ZDB-30-PAD)EBC6787673
(ZDB-89-EBL)EBL6787673
(OCoLC)1281970404
(DE-599)BVBBV048220946
dewey-full 621.988
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621.988
dewey-search 621.988
dewey-sort 3621.988
dewey-tens 620 - Engineering and allied operations
discipline Werkstoffwissenschaften / Fertigungstechnik
discipline_str_mv Werkstoffwissenschaften / Fertigungstechnik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048220946</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230510</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119210849</subfield><subfield code="9">978-1-119-21084-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119210801</subfield><subfield code="9">978-1-119-21080-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6787673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6787673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6787673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1281970404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048220946</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.988</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sarker, Dyuti</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metal Additive Manufacturing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley &amp; Sons, Incorporated</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (627 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.1.1 Integrated Topological and Functional Optimization DfAM.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toyserkani, Ehsan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Obehi Ibhadode, Osezua</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liravi, Farzad</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Paola</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taherkhani, Katayoon</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Sarker, Dyuti</subfield><subfield code="t">Metal Additive Manufacturing</subfield><subfield code="d">Newark : John Wiley &amp; Sons, Incorporated,c2022</subfield><subfield code="z">9781119210788</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FCO_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FHA_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV048220946
illustrated Not Illustrated
index_date 2024-07-03T19:50:32Z
indexdate 2024-11-25T18:02:39Z
institution BVB
isbn 9781119210849
9781119210801
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033601684
oclc_num 1281970404
open_access_boolean
owner DE-858
DE-Aug4
owner_facet DE-858
DE-Aug4
physical 1 Online-Ressource (627 Seiten)
psigel ZDB-30-PQE
ZDB-35-WIC
ZDB-35-WIC FCO_PDA_WIC_Kauf
ZDB-35-WIC FHA_PDA_WIC_Kauf
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher John Wiley & Sons, Incorporated
record_format marc
spellingShingle Sarker, Dyuti
Metal Additive Manufacturing
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Abbreviations -- Chapter 1 Additive Manufacturing Process Classification, Applications, Trends, Opportunities, and Challenges -- 1.1 Additive Manufacturing: A Long-Term Game Changer -- 1.2 AM Standard Definition and Classification -- 1.3 Why Metal Additive Manufacturing? -- 1.4 Market Size: Current and Future Estimation -- 1.5 Applications of Metal AM -- 1.5.1 Medical and Dental -- 1.5.2 Aerospace and Defense -- 1.5.3 Communication -- 1.5.4 Energy and Resources -- 1.5.5 Automotive -- 1.5.6 Industrial Tooling and Other Applications -- 1.6 Economic/Environmental Benefits and Societal Impact -- 1.7 AM Trends, Challenges, and Opportunities -- 1.8 Looking Ahead -- References -- Chapter 2 Basics of Metal Additive Manufacturing -- 2.1 Introduction -- 2.2 Main Metal Additive Manufacturing Processes -- 2.2.1 Powder Bed Fusion (PBF) -- 2.2.2 Directed Energy Deposition (DED) -- 2.2.3 Binder Jetting (BJ) -- 2.2.4 Emerging Metal AM Processes -- 2.3 Main Process Parameters for Metal DED, PBF, and BJ -- 2.3.1 Main Output Parameters -- 2.3.2 Combined Thermal Energy Source Parameters for PBF and DED -- 2.3.3 Beam Scanning Strategies and Parameters for PBF and DED -- 2.3.4 Powder Properties for PBF, DED, and BJ -- 2.3.5 Wire Properties for DED -- 2.3.6 Layer Thickness for PBF, DED, and BJ -- 2.3.7 Ambient Parameters for PBF, DED, and BJ -- 2.3.8 Geometry-Specific Parameters (PBF) -- 2.3.9 Support Structures for PBF -- 2.3.10 Binder Properties for BJ -- 2.3.11 Binder Saturation for BJ -- 2.4 Materials -- 2.4.1 Ferrous Alloys -- 2.4.2 Titanium Alloys -- 2.4.3 Nickel Alloys -- 2.4.4 Aluminum Alloys -- References -- Chapter 3 Main Sub-Systems for Metal AM Machines -- 3.1 Introduction -- 3.2 System Setup of AM Machines -- 3.2.1 Laser Powder Bed Fusion (LPBF)
3.2.2 Laser Directed Energy Deposition (LDED) with Blown Powder Known as Laser Powder-Fed (LPF) -- 3.2.3 Binder Jetting (BJ) -- 3.3 Laser Basics: Important Parameters Needed to be Known for AM -- 3.3.1 Laser Theory -- 3.3.2 Laser Components -- 3.3.3 Continuous Vs. Pulsed Laser -- 3.3.4 Laser Types -- 3.3.5 Laser Beam Properties -- 3.4 Electron Beam Basics -- 3.4.1 Comparisons and Contrasts between Laser and Electron Beams -- 3.4.2 Electron Beam Powder Bed Fusion Setup -- 3.4.3 Electron Beam Mechanism -- 3.4.4 Vacuum Chambers -- 3.5 Powder Feeders and Delivery Nozzles Technology -- 3.5.1 Classification of Powder Feeders -- 3.5.2 Powder Delivery Nozzles for DED -- 3.5.3 Powder Bed Delivery and Spreading Mechanisms -- 3.5.4 Wire Feed System -- 3.5.5 Positioning Devices and Scanners in Laser-Based AM -- 3.5.6 Print-Head in Binder Jetting -- 3.6 CAD File Formats -- 3.6.1 CAD/CAM Software -- 3.7 Summary -- References -- Chapter 4 Directed Energy Deposition (DED): Directed Energy Deposition (DED) -- 4.1 Introduction -- 4.2 Laser Material Interaction and the Associated Significant Parameters to Laser AM -- 4.2.1 Continuous Versus Pulsed/Modulated Lasers -- 4.2.2 Absorption, Reflection, and Transmission Factors -- 4.2.3 Dependencies of Absorption Factor to Wavelength and Temperature -- 4.2.4 Angle of Incidence -- 4.2.5 Surface Roughness Effects -- 4.2.6 Scattering Effects -- 4.3 E-beam Material Interaction -- 4.4 Power Density and Interaction Time for Various Heat Source-based Material Processing -- 4.5 Physical Phenomena and Governing Equations During DED -- 4.5.1 Absorption -- 4.5.2 Heat Conduction -- 4.5.3 Surface Convection and Radiation -- 4.5.4 Fluid Dynamics -- 4.5.5 Phase Transformation -- 4.5.6 Rapid Solidification -- 4.5.7 Thermal Stresses -- 4.5.8 Flow Field in DED with Injected Powder -- 4.6 Modeling of DED.
4.6.1 Analytical Modeling: Basics, Simplified Equations, and Assumptions -- 4.6.2 Numerical Models for DED -- 4.6.3 Experimental-based Models: Basics and Approaches -- 4.7 Case Studies on Common Modeling Platforms for DED -- 4.7.1 Lumped Analytical Model for Powder-Fed LDED -- 4.7.2 Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED) -- 4.7.3 Numerical Modeling of LDED: Heat Transfer Model -- 4.7.4 Modeling of Wire-Fed E-beam DED (WF-EDED) -- 4.7.5 A Stochastic Model for Powder-Fed LDED -- 4.8 Summary -- References -- Chapter 5 Powder Bed Fusion Processes: Physics and Modeling -- 5.1 Introduction and Notes to Readers -- 5.2 Physics of Laser Powder bed Fusion (LPBF) -- 5.2.1 Heat Transfer in LPBF: Governing Equations and Assumptions -- 5.2.2 Fluid Flow in the Melt Pool of LPBF: Governing Equations and Assumptions -- 5.2.3 Vaporization and Material Expulsion: Governing Equations and Assumptions -- 5.2.4 Thermal Residual Stresses: Governing Equations and Assumptions -- 5.2.5 Numerical Modeling of LPBF -- 5.2.6 Case Studies on Common LPBF Modeling Platforms -- 5.3 Physics and Modeling of Electron Beam Additive Manufacturing -- 5.3.1 Electron Beam Additive Manufacturing Parameters -- 5.3.2 Emissions in Electron Beam Sources -- 5.3.3 Mathematical Description of Free Electron Current -- 5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF) -- 5.3.5 Case Studies -- 5.3.6 Summary -- References -- Chapter 6 Binder Jetting and Material Jetting: Binder Jetting and Material Jetting: Physics and Modeling -- 6.1 Introduction -- 6.2 Physics and Governing Equations -- 6.2.1 Droplet Formation -- 6.2.2 Droplet-Substrate Interaction -- 6.2.3 Binder Imbibition -- 6.3 Numerical Modeling -- 6.3.1 Level-Set ModelThis section is mainly adopted from the authors' previous work with permission from Elsevier. -- 6.3.2 Lattice Boltzmann Method -- 6.4 Summary
References -- Chapter 7 Material Extrusion: Material Extrusion: Physics and Modeling -- 7.1 Introduction -- 7.2 Analytical Modeling of ME -- 7.2.1 Heat Transfer and Outlet Temperature -- 7.2.2 Flow Dynamics and Drop Pressure -- 7.2.3 Die Swell -- 7.2.4 Deposition and Healing -- 7.3 Numerical Modeling of ME -- 7.4 Summary -- References -- Chapter 8 Material Design and Considerations for Metal Additive Manufacturing -- 8.1 Historical Background on Materials -- 8.2 Materials Science: Structure-Property Relationship -- 8.3 Manufacturing of Metallic Materials -- 8.4 Solidification of Metals: Equilibrium -- 8.5 Solidification in Additive Manufacturing: Non-Equilibrium -- 8.6 Equilibrium Solidification: Theory and Mechanism -- 8.6.1 Cooling Curve and Phase Diagram -- 8.7 Non-Equilibrium Solidification: Theory and Mechanism -- 8.8 Solute Redistribution and Microsegregation -- 8.9 Constitutional Supercooling -- 8.10 Nucleation and Growth Kinetics -- 8.10.1 Nucleation -- 8.10.2 Growth Behavior -- 8.11 Solidification Microstructure in Pure Metals and Alloys -- 8.12 Directional Solidification in AM -- 8.13 Factors Affecting Solidification in AM -- 8.13.1 Cooling Rate -- 8.13.2 Temperature Gradient and Solidification Rate -- 8.13.3 Process Parameters -- 8.13.4 Solidification Temperature Span -- 8.13.5 Gas Interactions -- 8.14 Solidification Defects -- 8.14.1 Porosity -- 8.14.2 Balling -- 8.14.3 Cracking -- 8.14.4 Lamellar Tearing -- 8.15 Post Solidification Phase Transformation -- 8.15.1 Ferrous Alloys/Steels -- 8.15.2 Al Alloys -- 8.15.3 Nickel Alloys/Superalloys -- 8.15.4 Titanium Alloys -- 8.16 Phases after Post-Process Heat Treatment -- 8.16.1 Ferrous Alloys -- 8.16.2 Al Alloys -- 8.16.3 Ni Alloys -- 8.16.4 Ti Alloys -- 8.17 Mechanical Properties -- 8.17.1 Hardness -- 8.17.2 Tensile Strength and Static Strength
8.17.3 Fatigue Behavior of AM-Manufactured Alloys -- 8.18 Summary -- References -- Chapter 9 Additive Manufacturing of Metal Matrix Composites -- 9.1 Introduction -- 9.2 Conventional Manufacturing Techniques for Metal Matrix Composites (MMCs) -- 9.3 Additive Manufacturing of Metal Matrix Composites (MMCs) -- 9.4 AM Challenges and Opportunities -- 9.5 Preparation of Composite Materials: Mechanical Mixing -- 9.6 Different Categories of MMCs -- 9.7 Additive Manufacturing of Ferrous Matrix Composites -- 9.7.1 316 SS-TiC Composite -- 9.7.2 316 SS-TiB2 Composite -- 9.7.3 H13-TiB2 Composite -- 9.7.4 H13-TiC Composite -- 9.7.5 Ferrous-WC Composite -- 9.7.6 Ferrous-VC Composites -- 9.8 Additive Manufacturing of Titanium-Matrix Composites (TMCs) -- 9.8.1 Ti-TiC Composite -- 9.8.2 Ti-TiB Composites -- 9.8.3 Ti-Hydroxyapatite (Ti-HA) Composites -- 9.8.4 Ti-6Al-4V-Metallic Glass (MG) Composites -- 9.8.5 Ti-6Al-4V+B4C Pre-alloyed Composites -- 9.8.6 Ti-6Al-4V+Mo Composite -- 9.8.7 Structure and Properties of Different TMCs -- 9.9 Additive Manufacturing of Aluminum Matrix Composites -- 9.9.1 Al-Fe2O3 Composite -- 9.9.2 AlSi10Mg-SiC Composite -- 9.9.3 AlSi10Mg-TiC Composite -- 9.9.4 2024Al-TiB2 Composite -- 9.9.5 AlSi10Mg-TiB2 Composite -- 9.9.6 AA7075-TiB2 Composite -- 9.10 Additive Manufacturing of Nickel Matrix Composites -- 9.10.1 Inconel 625-TiC Composites -- 9.10.2 Inconel 625-TiB2 Composite -- 9.11 Factors Affecting Composite Property -- 9.11.1 Mixing of Matrix and Reinforcing Elements -- 9.11.2 Size of Reinforcing Elements -- 9.11.3 Decomposition Temperature -- 9.11.4 Viscosity and Pore Formation -- 9.11.5 Volume of Reinforcing Elements and Pore Formation -- 9.11.6 Buoyancy Effects and Surface Tension Forces -- 9.12 Summary -- References -- Chapter 10 Design for Metal Additive Manufacturing -- 10.1 Design Frameworks for Additive Manufacturing
10.1.1 Integrated Topological and Functional Optimization DfAM.
title Metal Additive Manufacturing
title_auth Metal Additive Manufacturing
title_exact_search Metal Additive Manufacturing
title_exact_search_txtP Metal Additive Manufacturing
title_full Metal Additive Manufacturing
title_fullStr Metal Additive Manufacturing
title_full_unstemmed Metal Additive Manufacturing
title_short Metal Additive Manufacturing
title_sort metal additive manufacturing
url https://onlinelibrary.wiley.com/doi/book/10.1002/9781119210801
work_keys_str_mv AT sarkerdyuti metaladditivemanufacturing
AT toyserkaniehsan metaladditivemanufacturing
AT obehiibhadodeosezua metaladditivemanufacturing
AT liravifarzad metaladditivemanufacturing
AT russopaola metaladditivemanufacturing
AT taherkhanikatayoon metaladditivemanufacturing