The handbook of data science and AI generate value from data with machine learning and data analytics

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Papp, Stefan (VerfasserIn), Weidinger, Wolfgang (VerfasserIn), Munro, Katherine (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Munich Carl Hanser Verlag [2022]
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000008c 4500
001 BV047960371
003 DE-604
005 20241029
007 t|
008 220428s2022 gw a||| |||| 00||| eng d
015 |a 21,N50  |2 dnb 
016 7 |a 1247124304  |2 DE-101 
020 |a 9781569908860  |c Broschur : circa EUR 49.99 (DE) (freier Preis), circa EUR 51.40 (AT) (freier Preis)  |9 978-1-56990-886-0 
020 |a 1569908869  |9 1-56990-886-9 
024 3 |a 9781569908860 
028 5 2 |a Bestellnummer: 553/00886 
035 |a (OCoLC)1288569424 
035 |a (DE-599)DNB1247124304 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE 
049 |a DE-210  |a DE-12  |a DE-91  |a DE-20 
084 |a ST 302  |0 (DE-625)143652:  |2 rvk 
084 |8 1\p  |a 004  |2 23sdnb 
084 |a DAT 700  |2 stub 
100 1 |a Papp, Stefan  |e Verfasser  |0 (DE-588)1161133895  |4 aut 
245 1 0 |a The handbook of data science and AI  |b generate value from data with machine learning and data analytics  |c Stefan Papp, Wolfgang Weidinger, Katherine Munro, Bernhard Ortner, Annalisa Cadonna [und weitere] 
264 1 |a Munich  |b Carl Hanser Verlag  |c [2022] 
264 4 |c © 2022 
300 |a XX, 553 Seiten  |b Illustrationen, Diagramme  |c 24 cm  |e Enthält: Online-Ressource 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Data Science  |0 (DE-588)1140936166  |2 gnd  |9 rswk-swf 
650 0 7 |a Big Data  |0 (DE-588)4802620-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Künstliche Intelligenz  |0 (DE-588)4033447-8  |2 gnd  |9 rswk-swf 
653 |a Algorithmen 
653 |a Business Intelligence 
653 |a Data Engineering 
653 |a Data Scientist 
653 |a Datenanalyse 
653 |a Datenstrategie 
653 |a Deep Learning 
653 |a Machine Learning 
653 |a Statistik 
653 |a INF2022 
689 0 0 |a Data Science  |0 (DE-588)1140936166  |D s 
689 0 1 |a Big Data  |0 (DE-588)4802620-7  |D s 
689 0 2 |a Künstliche Intelligenz  |0 (DE-588)4033447-8  |D s 
689 0 3 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 |5 DE-604 
700 1 |a Weidinger, Wolfgang  |e Verfasser  |0 (DE-588)1190386240  |4 aut 
700 1 |a Munro, Katherine  |e Verfasser  |0 (DE-588)1257369903  |4 aut 
710 2 |a Hanser Publications  |0 (DE-588)1064064051  |4 pbl 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, PDF  |z 978-1-56990-887-7  |w (DE-604)BV047961078 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, EPUB  |z 978-1-56990-888-4 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033341574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a vlb  |d 20211208  |q DE-101  |u https://d-nb.info/provenance/plan#vlb 
943 1 |a oai:aleph.bib-bvb.de:BVB01-033341574 

Datensatz im Suchindex

DE-BY-TUM_call_number 0001 2023 A 2057
0002 DAT 700 2023 A 569
DE-BY-TUM_katkey 2708233
DE-BY-TUM_location Mag
00
DE-BY-TUM_media_number 040011121461
040009468055
_version_ 1820809137232019456
adam_text TABLE OF CONTENTS FOREWORD ...................................................................................... XV PREFACE .............................................................................................................. XVIII ACKNOWLEDGMENTS ......................................................................................................... XX 1 INTRODUCTION ............................................................................................. 1 1.1 WHAT ARE DATA SCIENCE, MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE? ........... 2 1.2 DATA STRATEGY ....................................................................................................... 8 1.3 FROM STRATEGY TO USE CASES ............................................................................... 10 1.3.1 DATA TEAMS ............................................................................................. 11 1.3.2 DATA AND PLATFORMS ................................................................................. 16 1.3.3 MODELING AND ANALYSIS ......................................................................... 17 1.4 USE CASE IMPLEMENTATION ................................................................................... 18 1.4.1 ITERATIVE EXPLORATION OF USE CASES ....................................................... 19 1.4.2 END-TO-END DATA PROCESSING ................................................................. 21 1.4.3 DATAPRODUCTS ......................................................................................... 22 1.5 REAL-LIFE USE CASE EXAMPLES ............................................................................. 22 1.5.1 VALUE CHAIN DIGITIZATION (VCD) ........................................................... 22 1.5.2 MARKETING SEGMENT ANALYTICS ............................................................. 23 1.5.3 360 VIEW OF THE CUSTOMER ................................................................... 23 1.5.4 NGO AND SUSTAINABILITY USE CASES ....................................................... 24 1.6 DELIVERING RESULTS ............................................................................................... 25 1.7 IN A NUTSHELL ......................................................................................................... 27 2 INFRASTRUCTURE ......................................................................................... 29 STEFAN PAPP 2.1 INTRODUCTION ......................................................................................................... 29 2.2 HARDWARE ............................................................................................................. 31 2.2.1 DISTRIBUTED SYSTEMS ............................................................................... 34 2.2.2 HARDWARE FOR AL APPLICATIONS ............................................................... 37 2.3 LINUX ESSENTIALS FOR DATA PROFESSIONALS ........................................................... 38 2.4 TERRAFORM ................................................... 54 2.5 CLOUD ................................................................................................................... 58 2.5.1 BASIC SERVICES ......................................................................................... 61 2.5.2 CLOUD-NATIVE SOLUTIONS ............................................................................ 65 2.6 IN A NUTSHELL ......................................................................................................... 68 3 DATA ARCHITECTURE ................................................................................... 69 ZOLTAN C. TOTH 3.1 OVERVIEW ............................................................................................................... 69 3.1.1 MASLOW S HIERARCHY OF NEEDS FOR DATA .................................................. 69 3.1.2 DATA ARCHITECTURE REQUIREMENTS .......................................................... 71 3.1.3 THE STRUCTURE OF A TYPICAL DATA ARCHITECTURE ...................................... 71 3.1.4 ETL (EXTRACT, TRANSFORM, LOAD) .............................................................. 72 3.1.5 ELT (EXTRACT, LOAD, TRANSFORM) .............................................................. 73 3.1.6 ETLT ......................................................................................................... 73 3.2 DATA INGESTION AND INTEGRATION ............................................................................ 74 3.2.1 DATASOURCES ........................................................................................... 74 3.2.2 TRADITIONAL FILE FORMATS ........................................................................ 75 3.2.3 MODERN FILE FORMATS .............................................................................. 77 3.2.4 SUMMARY ................................................................................................. 79 3.3 DATA WAREHOUSES, DATA LAKES, AND LAKEHOUSES ................................................ 79 3.3.1 DATAWAREHOUSES ................................................................................... 79 3.3.2 DATA LAKES AND THE LAKEHOUSE .............................................................. 83 3.3.3 SUMMARY: COMPARING DATA WAREHOUSES TO LAKEHOUSES .................... 85 3.4 DATA PROCESSING AND TRANSFORMATION ................................................................ 86 3.4.1 BIG DATA & APACHE SPARK ........................................................................ 86 3.4.2 DATABRICKS ............................................................................................... 93 3.5 WORKFLOW ORCHESTRATION ..................................................................................... 94 3.6 A DATA ARCHITECTURE USE CASE ............................................................................ 96 3.7 IN A NUTSHELL ......................................................................................................... 100 4 DATA ENGINEERING .................................................................................... 101 STEFAN PAPP, BERNHARD ORTNER 4.1 DATA INTEGRATION ..................................................................................................... 102 4.1.1 DATA PIPELINES ....................................................................................... 102 4.1.2 DESIGNING DATA PIPELINES ...................................................................... 108 4.1.3 CI/CD ....................................................................................................... 110 4.1.4 PROGRAMMING LANGUAGES ...................................................................... 112 4.1.5 KAFKA AS REFERENCE ETL TOOL ................................................................. 115 4.1.6 DESIGN PATTERNS ...................................................................................... 119 4.1.7 AUTOMATION OF THE STAGES ........................................................................ 120 4.1.8 SIX BUILDING BLOCKS OF THE DATA PIPELINE ............................................ 120 4.2 MANAGING ANALYTICAL MODELS ............................................................................. 125 4.2.1 MODEL DELIVERY ....................................................................................... 126 4.2.2 MODEL UPDATE ......................................................................................... 127 4.2.3 MODEL OR PARAMETER UPDATE ................................................................... 128 4.2.4 MODEL SCALING ......................................................................................... 128 4.2.5 FEEDBACK INTO THE OPERATIONAL PROCESSES ............................................ 129 4.3 IN A NUTSHELL ......................................................................................................... 130 5 DATA MANAGEMENT ................................................................................ 131 STEFAN PAPP, BERNHARD ORTNER 5.1 DATA GOVERNANCE ................................................................................................. 133 5.1.1 DATA CATALOG ........................................................................................... 134 5.1.2 DATA DISCOVERY ....................................................................................... 136 5.1.3 DATA QUALITY ........................................................................................... 140 5.1.4 MASTER DATA MANAGEMENT ..................................................................... 141 5.1.5 DATA SHARING ......................................................................................... 142 5.2 INFORMATION SECURITY ........................................................................................... 143 5.2.1 DATA CLASSIFICATION ................................................................................. 144 5.2.2 PRIVACY PROTECTION ................................................................................. 145 5.2.3 ENCRYPTION ............................................................................................... 147 5.2.4 SECRETS MANAGEMENT ............................................................................. 149 5.2.5 DEFENSE IN DEPTH ................................................................................... 150 5.3 IN A NUTSHELL ......................................................................................................... 151 6 MATHEMATICS ........................................................................................... 153 ANNALISA CADONNA 6.1 LINEAR ALGEBRA ..................................................................................................... 154 6.1.1 VECTORS AND MATRICES ............................................................................. 154 6.1.2 OPERATIONS BETWEEN VECTORS AND MATRICES .......................................... 157 6.1.3 LINEAR TRANSFORMATIONS ......................................................................... 160 6.1.4 EIGENVALUES, EIGENVECTORS, AND EIGENDECOMPOSITION .......................... 161 6.1.5 OTHER MATRIX DECOMPOSITIONS ............................................................... 162 6.2 CALCULUS AND OPTIMIZATION ................................................................................. 163 6.2.1 DERIVATIVES ............................................................................................. 164 6.2.2 GRADIENT AND HESSIAN ........................................................................... 166 6.2.3 GRADIENT DESCENT ................................................................................... 167 6.2.4 CONSTRAINED OPTIMIZATION ..................................................................... 169 6.3 PROBABILITY THEORY ............................................................................................... 170 6.3.1 DISCRETE AND CONTINUOUS RANDOM VARIABLES ........................................ 171 6.3.2 EXPECTED VALUE, VARIANCE, AND COVARIANCE .......................................... 174 6.3.3 INDEPENDENCE, CONDITIONAL DISTRIBUTIONS, AND BAYES THEOREM ........ 176 6.4 IN A NUTSHELL ......................................................................................................... 177 7 STATISTICS - BASICS ................................................................................... 179 RANIA WAZIR, GEORG LANGS, ANNALISA CADONNA 7.1 DATA ....................................................................................................................... 180 7.2 SIMPLE LINEAR REGRESSION .................................................................................... 181 7.3 MULTIPLE LINEAR REGRESSION ................................................................................ 189 7.4 LOGISTIC REGRESSION ............................................................................................. 191 7.5 HOW GOOD IS OUR MODEL? ...................................................................................... 198 7.6 IN A NUTSHELL ......................................................................................................... 199 8 MACHINE LEARNING ................................................................................... 201 GEORG LANGS, KATHERINE MUNRO, RANIA WAZIR 8.1 INTRODUCTION ......................................................................................................... 201 8.2 BASICS: FEATURE SPACES ........................................................................................ 203 8.3 CLASSIFICATION MODELS ......................................................................................... 206 8.3.1 K-NEAREST-NEIGHBOR-CLASSIFIER ................................................................ 206 8.3.2 SUPPORT VECTOR MACHINE ........................................................................ 207 8.3.3 DECISION TREE ......................................................................................... 208 8.4 ENSEMBLE METHODS ............................................................................................. 209 8.4.1 BIAS AND VARIANCE .................................................................................... 210 8.4.2 BAGGING: RANDOM FORESTS ...................................................................... 211 8.4.3 BOOSTING: ADABOOST ................................................................................ 215 8.5 ARTIFICIAL NEURAL NETWORKS AND THE PERCEPTRON ................................................ 215 8.6 LEARNING WITHOUT LABELS - FINDING STRUCTURE .................................................. 218 8.6.1 CLUSTERING ............................................................................................... 218 8.6.2 MANIFOLD LEARNING .................................................................................. 219 8.6.3 GENERATIVE MODELS ................................................................................. 220 8.7 REINFORCEMENT LEARNING ...................................................................................... 221 8.8 OVERARCHING CONCEPTS ......................................................................................... 223 8.9 INTO THE DEPTH - DEEP LEARNING .......................................................................... 224 8.9.1 CONVOLUTIONAL NEURAL NETWORKS .......................................................... 224 8.9.2 TRAINING CONVOLUTIONAL NEURAL NETWORKS ............................................ 225 8.9.3 RECURRENT NEURAL NETWORKS .................................................................... 227 8.9.4 LONG SHORT-TERM MEMORY .................................................................... 228 8.9.5 AUTOENCODERS AND U-NETS ...................................................................... 230 8.9.6 ADVERSARIAL TRAINING APPROACHES .......................................................... 231 8.9.7 GENERATIVE ADVERSARIAL NETWORKS ........................................................ 232 8.9.8 CYCLE GANS AND STYLE GANS ................................................................ 234 8.9.9 OTHER ARCHITECTURES AND LEARNING STRATEGIES ...................................... 235 8.10 VALIDATION STRATEGIES FOR MACHINE LEARNING TECHNIQUES ................................ 235 8.11 CONCLUSION ........................................................................................................... 237 8.12 IN A NUTSHELL ......................................................................................................... 237 9 BUILDING GREAT ARTIFICIAL INTELLIGENCE .................................................... 239 DANKO NIKOLIC 9.1 HOW AL RELATES TO DATA SCIENCE AND MACHINE LEARNING .................................. 239 9.2 A BRIEF HISTORY OF AL ........................................................................................... 243 9.3 FIVE RECOMMENDATIONS FOR DESIGNING AN AL SOLUTION ...................................... 245 9.3.1 RECOMMENDATION NO. 1: BE PRAGMATIC ................................................. 245 9.3.2 RECOMMENDATION NO. 2: MAKE IT EASIER FOR MACHINES TO LEARN - CREATE INDUCTIVE BIASES ......................................................................... 247 9.3.3 RECOMMENDATION NO. 3: PERFORM ANALYTICS ......................................... 252 9.3.4 RECOMMENDATION NO. 4: BEWARE OF THE SCALING TRAP ............................ 254 9.3.5 RECOMMENDATION NO. 5: BEWARE OF THE GENERALITY TRAP (THERE IS NO SUCH A THING AS FREE LUNCH) ............................................... 263 9.4 HUMAN-LEVEL INTELLIGENCE ................................................................................... 268 9.5 IN A NUTSHELL ......................................................................................................... 270 10 NATURAL LANGUAGE PROCESSING (NLP) .................................................... 273 KATHERINE MUNRO 10.1 WHAT IS NLP AND WHY IS IT SO VALUABLE? ........................................................... 273 10.2 NLP DATA PREPARATION TECHNIQUES ..................................................................... 275 10.2.1 THE NLP PIPELINE ................................................................................... 275 10.2.2 CONVERTING THE INPUT FORMAT FOR MACHINE LEARNING ........................... 281 10.3 NLP TASKS AND METHODS ..................................................................................... 283 10.3.1 RULE-BASED (SYMBOLIC) NLP ................................................................... 284 10.3.2 STATISTICAL MACHINE LEARNING APPROACHES ........................................... 287 10.3.3 NEURAL NLP ............................................................................................. 295 10.3.4 TRANSFER LEARNING ................................................................................... 301 10.4 AT THE CUTTING EDGE: CURRENT RESEARCH FOCUSES FOR NLP .................................. 312 10.5 IN A NUTSHELL ......................................................................................................... 314 11 COMPUTER VISION .................................................................................... 317 ROXANE LICANDRO 11.1 WHAT IS COMPUTER VISION? ................................................................................. 317 11.2 A PICTURE PAINTS A THOUSAND WORDS ................................................................. 319 11.2.1 THE HUMAN EYE ..................................................................................... 319 11.2.2 IMAGE ACQUISITION PRINCIPLE ................................................................. 321 11.2.3 DIGITAL FILE FORMATS ............................................................................... 326 11.2.4 IMAGE COMPRESSION ............................................................................... 327 11.3 I SPY WITH MY LITTLE EYE SOMETHING THAT IS ...................................................... 328 11.3.1 COMPUTATIONAL PHOTOGRAPHY AND IMAGE MANIPULATION ......................... 330 11.4 COMPUTER VISION APPLICATIONS & FUTURE DIRECTIONS .......................................... 334 11.4.1 IMAGE RETRIEVAL SYSTEMS ....................................................................... 334 11.4.2 OBJECT DETECTION, CLASSIFICATION AND TRACKING ...................................... 337 11.4.3 MEDICAL COMPUTER VISION ..................................................................... 338 11.5 MAKING HUMANS SEE ............................................................................................ 341 11.6 IN A NUTSHELL .......................................................................................................... 343 12 MODELLING AND SIMULATION - CREATE YOUR OWN MODELS ...................... 347 GUNTHER ZAUNER, WOLFGANG WEIDINGER 12.1 INTRODUCTION ......................................................................................................... 347 12.2 GENERAL ASPECTS ................................................................................................... 349 12.3 MODELLING TO ANSWER QUESTIONS .......................................................................... 349 12.4 REPRODUCIBILITY AND MODEL LIFECYCLE .................................................................. 351 12.4.1 THE LIFECYCLE OF A MODELLING AND SIMULATION QUESTION ...................... 352 12.4.2 PARAMETER AND OUTPUT DEFINITION .......................................................... 354 12.4.3 DOCUMENTATION ...................................................................................... 357 12.4.4 VERIFICATION AND VALIDATION .................................................................... 357 12.5 METHODS ............................................................................................................... 361 12.5.1 ORDINARY DIFFERENTIAL EQUATIONS (DDES) .............................................. 361 12.5.2 SYSTEM DYNAMICS (SD) ............................................................................ 362 12.5.3 DISCRETE EVENT SIMULATION ...................................................................... 365 12.5.4 AGENT-BASED MODELLING .......................................................................... 368 12.6 MODELLING AND SIMULATION EXAMPLES .................................................................. 371 12.6.1 DYNAMIC MODELLING OF RAILWAY NETWORKS FOR OPTIMAL PATHFINDING USING AGENT-BASED METHODS AND REINFORCEMENT LEARNING ................ 371 12.6.2 AGENT-BASED COVID MODELLING STRATEGIES .............................................. 373 12.6.3 DEEP REINFORCEMENT LEARNING APPROACH FOR OPTIMAL REPLENISHMENT POLICY IN A VMI SETTING .......................................................................... 378 12.7 SUMMARY AND LESSONS LEARNED .......................................................................... 381 12.8 IN A NUTSHELL ....................................................................................................... 381 13 DATA VISUALIZATION ................................................................................... 385 BARBORA VESELA 13.1 HISTORY ................................................................................................................. 386 13.2 WHICH TOOLS TO USE ............................................................................................. 391 13.3 TYPES OF DATA VISUALIZATIONS .............................................................................. 393 13.3.1 SCATTER PLOT ............................................................................................. 394 13.3.2 LINE CHART ............................................................................................... 394 13.3.3 COLUMN AND BAR CHARTS .......................................................................... 395 13.3.4 HISTOGRAM ................................................................................................ 396 13.3.5 PIE CHART ................................................................................................. 397 13.3.6 BOX PLOT ................................................................................................... 398 13.3.7 HEAT MAP ................................................................................................. 398 13.3.8 TREE DIAGRAM ......................................................................................... 399 13.3.9 OTHER TYPES OF VISUALIZATIONS ................................................................ 400 13.4 SELECT THE RIGHT DATA VISUALIZATION .................................................................... 400 13.5 TIPS AND TRICKS ................................................................................................... 402 13.6 PRESENTATION OF DATA VISUALIZATION ................................................................... 407 13.7 IN A NUTSHELL ......................................................................................................... 407 14 DATA DRIVEN ENTERPRISES ........................................................................ 411 MARIO MEIR-HUBER, STEFAN PAPP 14.1 THE THREE LEVELS OF A DATA DRIVEN ENTERPRISE ................................................... 412 14.2 CULTURE ................................................................................................................. 412 14.2.1 CORPORATE STRATEGY FOR DATA ................................................................... 413 14.2.2 THE CURRENT STATE ANALYSIS ................................................................... 415 14.2.3 CULTURE AND ORGANIZATION OF A SUCCESSFUL DATA ORGANISATION ............ 417 14.2.4 CORE PROBLEM: THE SKILLS GAP ............................................................... 424 14.3 TECHNOLOGY ......................................................................................................... 426 14.3.1 THE IMPACT OF OPEN SOURCE ................................................................... 426 14.3.2 CLOUD ....................................................................................................... 426 14.3.3 VENDOR SELECTION ..................................................................................... 427 14.3.4 DATA LAKE FROM A BUSINESS PERSPECTIVE ................................................ 427 14.3.5 THE ROLE OF IT ......................................................................................... 428 14.3.6 DATA SCIENCE LABS ................................................................................... 428 14.3.7 REVOLUTION IN ARCHITECTURE: THE DATA MESH .......................................... 429 14.4 BUSINESS ............................................................................................................... 431 14.4.1 BUY AND SHARE DATA ............................................................................... 431 14.4.2 ANALYTICAL USE CASE IMPLEMENTATION ................................................... 432 14.4.3 SELF-SERVICE ANALYTICS ............................................................................. 433 14.5 IN A NUTSHELL ......................................................................................................... 433 15 LEGAL FOUNDATION OF DATA SCIENCE ....................................................... 435 BERNHARD ORTNER 15.1 INTRODUCTION ......................................................................................................... 435 15.2 CATEGORIES OF DATA ............................................................................................... 436 15.3 GENERAL DATA PROTECTION REGULATION .................................................................... 437 15.3.1 FUNDAMENTAL RIGHTS OF GDPR ............................................................. 437 15.3.2 DECLARATION OF CONSENT ........................................................................... 438 15.3.3 RISK-ASSESSMENT ..................................................................................... 440 15.3.4 ANONYMIZATION UND PSEUDO-ANONYMIZATION ........................................ 441 15.3.5 TYPES OF ANONYMIZATION ....................................................................... 442 15.3.6 LAWFUL AND TRANSPARENT DATA PROCESSING ............................................ 444 15.3.7 RIGHT TO DATA DELETION AND CORRECTION ................................................. 445 15.3.8 PRIVACY BY DESIGN ................................................................................... 446 15.3.9 PRIVACY BY DEFAULT ................................................................................. 446 15.4 EPRIVACY-REGULATION ............................................................................................ 446 15.5 DATA PROTECTION OFFICER ....................................................................................... 447 15.5.1 INTERNATIONAL DATA EXPORT IN FOREIGN COUNTRIES ............................... 447 YYI 15.6 SECURITY MEASURES ............................................................................................... 448 15.6.1 DATA ENCRYPTION ...................................................................................... 449 15.7 CCPA COMPARED TO GDPR ................................................................................... 449 15.7.1 TERRITORIAL SCOPE ..................................................................................... 450 15.7.2 OPT-IN VS. OPT-OUT ................................................................................... 450 15.7.3 RIGHT OF DATA EXPORT ................................................................................ 450 15.7.4 RIGHT NOT TO BE DISCRIMINATED AGAINST ................................................. 451 15.8 IN A NUTSHELL ......................................................................................................... 451 16 AL IN DIFFERENT INDUSTRIES ........................................................................ 453 STEFAN PAPP, MARIO MEIR-HUBER, WOLFGANG WEIDINGER, THOMAS TREND, MAREK DANIS 16.1 AUTOMOTIVE ........................................................................................................... 456 16.1.1 VISION ..................................................................................................... 457 16.1.2 DATA ......................................................................................................... 458 16.1.3 USE CASES ............................................................................................... 458 16.1.4 CHALLENGES ............................................................................................... 459 16.2 AVIATION ................................................................................................................. 461 16.2.1 VISION ....................................................................................................... 461 16.2.2 DATA ......................................................................................................... 462 16.2.3 USE CASES ................................................................................................. 462 16.2.4 CHALLENGES ............................................................................................... 463 16.3 ENERGY ................................................................................................................... 463 16.3.1 VISION ....................................................................................................... 464 16.3.2 DATA ......................................................................................................... 464 16.3.3 USE CASES ............................................................................................... 465 16.3.4 CHALLENGES ............................................................................................... 466 16.4 FINANCE ................................................................................................................. 466 16.4.1 VISION ....................................................................................................... 466 16.4.2 DATA ......................................................................................................... 467 16.4.3 USE CASES ............................................................................................... 467 16.4.4 CHALLENGES ............................................................................................... 469 16.5 HEALTH ................................................................................................................... 469 16.5.1 VISION ....................................................................................................... 470 16.5.2 DATA ......................................................................................................... 471 16.5.3 USE CASES ............................................................................................... 471 16.5.4 CHALLENGES ............................................................................................... 471 16.6 GOVERNMENT ......................................................................................................... 472 16.6.1 VISION ....................................................................................................... 472 16.6.2 DATA ......................................................................................................... 473 16.6.3 USE CASES ............................................................................................... 473 16.6.4 CHALLENGES ............................................................................................... 476 16.7 ART ....................................................................................................................... 476 16.7.1 VISION ................................................................................................... 477 16.7.2 DATA ....................................................................................................... 477 16.7.3 USE CASES ............................................................................................. 477 16.7.4 CHALLENGES ........................................................................................... 478 16.8 MANUFACTURING ................................................................................................... 478 16.8.1 VISION ................................................................................................... 479 16.8.2 DATA ....................................................................................................... 479 16.8.3 USE CASES ............................................................................................. 479 16.8.4 CHALLENGES ........................................................................................... 480 16.9 OIL AND GAS ......................................................................................................... 481 16.9.1 VISION ................................................................................................... 481 16.9.2 DATA ....................................................................................................... 481 16.9.3 USE CASES ............................................................................................. 482 16.9.4 CHALLENGES ........................................................................................... 484 16.10 SAFETY AT WORK ..................................................................................................... 484 16.10.1 VISION ................................................................................................... 484 16.10.2 DATA ....................................................................................................... 485 16.10.3 USE CASES ............................................................................................. 485 16.10.4 CHALLENGES ........................................................................................... 486 16.11 RETAIL ................................................................................................................... 487 16.11.1 VISION ................................................................................................... 487 16.11.2 DATA ....................................................................................................... 487 16.11.3 USE CASES ............................................................................................. 488 16.11.4 CHALLENGES ........................................................................................... 488 16.12 TELECOMMUNICATIONS PROVIDER ........................................................................... 489 16.12.1 VISION ................................................................................................... 489 16.12.2 DATA ....................................................................................................... 490 16.12.3 USE CASES ............................................................................................. 490 16.12.4 CHALLENGES ........................................................................................... 492 16.13 TRANSPORT ........................................................................................................... 492 16.13.1 VISION ................................................................................................... 492 16.13.2 DATA ....................................................................................................... 493 16.13.3 USE CASES ............................................................................................. 493 16.13.4 CHALLENGES ........................................................................................... 494 16.14 TEACHING AND TRAINING ....................................................................................... 494 16.14.1 VISION ................................................................................................... 495 16.14.2 DATA ....................................................................................................... 496 16.14.3 USE CASES ............................................................................................. 496 16.14.4 CHALLENGES ........................................................................................... 497 16.15 THE DIGITAL SOCIETY ........................................................................................... 497 16.16 IN A NUTSHELL ....................................................................................................... 499 17 MINDSET AND COMMUNITY ...................................................................... 501 STEFAN PAPP 17.1 DATA-DRIVEN MINDSET ........................................................................................... 501 17.2 DATA SCIENCE CULTURE ........................................................................................... 504 17.2.1 START-UP OR CONSULTING FIRM? ................................................................ 504 17.2.2 LABS INSTEAD OF CORPORATE POLICY .......................................................... 505 17.2.3 KEIRETSU INSTEAD OF LONE WOLF .............................................................. 505 17.2.4 AGILE SOFTWARE DEVELOPMENT ................................................................ 507 17.2.5 COMPANY AND WORK CULTURE .................................................................. 507 17.3 ANTIPATTERNS ......................................................................................................... 510 17.3.1 DEVALUATION OF DOMAIN EXPERTISE ........................................................ 510 17.3.2 IT WILL TAKE CARE OF IT ............................................................................ 511 17.3.3 RESISTANCE TO CHANGE ............................................................................ 511 17.3.4 KNOW-IT-ALL MENTALITY ............................................................................ 512 17.3.5 DOOM AND GLOOM .................................................................................... 513 17.3.6 PENNY-PINCHING ...................................................................................... 513 17.3.7 FEAR CULTURE ........................................................................................... 514 17.3.8 CONTROL OVER RESOURCES .......................................................................... 514 17.3.9 BLIND FAITH IN RESOURCES ........................................................................ 515 17.3.10 THE SWISS ARMY KNIFE .......................................................................... 516 17.3.11 OVER-ENGINEERING .................................................................................. 516 17.4 IN A NUTSHELL ......................................................................................................... 517 18 TRUSTWORTHY AL ........................................................................................ 519 RANIA WAZIR 18.1 LEGAL AND SOFT-LAW FRAMEWORK .......................................................................... 520 18.1.1 STANDARDS ............................................................................................... 522 18.1.2 REGULATIONS ........................................................................................... 522 18.2 AL STAKEHOLDERS ................................................................................................... 524 18.3 FAIRNESS IN AL ....................................................................................................... 525 18.3.1 BIAS ......................................................................................................... 526 18.3.2 FAIRNESS METRICS .................................................................................... 529 18.3.3 MITIGATING UNWANTED BIAS IN AL SYSTEMS ............................................ 532 18.4 TRANSPARENCY OF AL SYSTEMS ................................................................................ 533 18.4.1 DOCUMENTING THE DATA .......................................................................... 534 18.4.2 DOCUMENTING THE MODEL ........................................................................ 535 18.4.3 EXPLAINABILITY ....................................................................................... 536 18.5 CONCLUSION ........................................................................................................... 538 18.6 IN A NUTSHELL ......................................................................................................... 538 19 THE AUTHORS ............................................................................................. 539 INDEX ................................................................................................................... 545
any_adam_object 1
author Papp, Stefan
Weidinger, Wolfgang
Munro, Katherine
author_GND (DE-588)1161133895
(DE-588)1190386240
(DE-588)1257369903
author_facet Papp, Stefan
Weidinger, Wolfgang
Munro, Katherine
author_role aut
aut
aut
author_sort Papp, Stefan
author_variant s p sp
w w ww
k m km
building Verbundindex
bvnumber BV047960371
classification_rvk ST 302
classification_tum DAT 700
ctrlnum (OCoLC)1288569424
(DE-599)DNB1247124304
discipline Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02891nam a22006858c 4500</leader><controlfield tag="001">BV047960371</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241029 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">220428s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N50</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1247124304</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781569908860</subfield><subfield code="c">Broschur : circa EUR 49.99 (DE) (freier Preis), circa EUR 51.40 (AT) (freier Preis)</subfield><subfield code="9">978-1-56990-886-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1569908869</subfield><subfield code="9">1-56990-886-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781569908860</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 553/00886</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1288569424</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1247124304</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-210</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 700</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Papp, Stefan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1161133895</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The handbook of data science and AI</subfield><subfield code="b">generate value from data with machine learning and data analytics</subfield><subfield code="c">Stefan Papp, Wolfgang Weidinger, Katherine Munro, Bernhard Ortner, Annalisa Cadonna [und weitere]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Munich</subfield><subfield code="b">Carl Hanser Verlag</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 553 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm</subfield><subfield code="e">Enthält: Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algorithmen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Business Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Scientist</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Datenanalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Datenstrategie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Deep Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Statistik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">INF2022</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weidinger, Wolfgang</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1190386240</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munro, Katherine</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1257369903</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Hanser Publications</subfield><subfield code="0">(DE-588)1064064051</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-1-56990-887-7</subfield><subfield code="w">(DE-604)BV047961078</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-1-56990-888-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=033341574&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20211208</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033341574</subfield></datafield></record></collection>
id DE-604.BV047960371
illustrated Illustrated
indexdate 2024-12-24T09:15:41Z
institution BVB
institution_GND (DE-588)1064064051
isbn 9781569908860
1569908869
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033341574
oclc_num 1288569424
open_access_boolean
owner DE-210
DE-12
DE-91
DE-BY-TUM
DE-20
owner_facet DE-210
DE-12
DE-91
DE-BY-TUM
DE-20
physical XX, 553 Seiten Illustrationen, Diagramme 24 cm Enthält: Online-Ressource
publishDate 2022
publishDateSearch 2022
publishDateSort 2022
publisher Carl Hanser Verlag
record_format marc
spellingShingle Papp, Stefan
Weidinger, Wolfgang
Munro, Katherine
The handbook of data science and AI generate value from data with machine learning and data analytics
Data Science (DE-588)1140936166 gnd
Big Data (DE-588)4802620-7 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Künstliche Intelligenz (DE-588)4033447-8 gnd
subject_GND (DE-588)1140936166
(DE-588)4802620-7
(DE-588)4193754-5
(DE-588)4033447-8
title The handbook of data science and AI generate value from data with machine learning and data analytics
title_auth The handbook of data science and AI generate value from data with machine learning and data analytics
title_exact_search The handbook of data science and AI generate value from data with machine learning and data analytics
title_full The handbook of data science and AI generate value from data with machine learning and data analytics Stefan Papp, Wolfgang Weidinger, Katherine Munro, Bernhard Ortner, Annalisa Cadonna [und weitere]
title_fullStr The handbook of data science and AI generate value from data with machine learning and data analytics Stefan Papp, Wolfgang Weidinger, Katherine Munro, Bernhard Ortner, Annalisa Cadonna [und weitere]
title_full_unstemmed The handbook of data science and AI generate value from data with machine learning and data analytics Stefan Papp, Wolfgang Weidinger, Katherine Munro, Bernhard Ortner, Annalisa Cadonna [und weitere]
title_short The handbook of data science and AI
title_sort the handbook of data science and ai generate value from data with machine learning and data analytics
title_sub generate value from data with machine learning and data analytics
topic Data Science (DE-588)1140936166 gnd
Big Data (DE-588)4802620-7 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Künstliche Intelligenz (DE-588)4033447-8 gnd
topic_facet Data Science
Big Data
Maschinelles Lernen
Künstliche Intelligenz
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033341574&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT pappstefan thehandbookofdatascienceandaigeneratevaluefromdatawithmachinelearninganddataanalytics
AT weidingerwolfgang thehandbookofdatascienceandaigeneratevaluefromdatawithmachinelearninganddataanalytics
AT munrokatherine thehandbookofdatascienceandaigeneratevaluefromdatawithmachinelearninganddataanalytics
AT hanserpublications thehandbookofdatascienceandaigeneratevaluefromdatawithmachinelearninganddataanalytics