The rise of big spatial data

This edited volume gathers the proceedings of the Symposium GIS Ostrava 2016, the Rise of Big Spatial Data, held at the Technical University of Ostrava, Czech Republic, March 16-18, 2016. Combining theoretical papers and applications by authors from around the globe, it summarises the latest researc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Ivan, Igor (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Cham, Switzerland Springer [2017]
Schriftenreihe:Lecture notes in geoinformation and cartography
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV047683806
003 DE-604
005 00000000000000.0
007 t|
008 220117s2017 xx a||| |||| 00||| eng d
020 |a 9783319451220  |9 978-3-319-45122-0 
035 |a (OCoLC)985603587 
035 |a (DE-599)BVBBV047683806 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-1050 
084 |a ST 630  |0 (DE-625)143685:  |2 rvk 
245 1 0 |a The rise of big spatial data  |c Igor Ivan [and three others], editors 
264 1 |a Cham, Switzerland  |b Springer  |c [2017] 
300 |a xxvii, 408 Seiten  |b Illustrationen, Diagramme  |c 25 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Lecture notes in geoinformation and cartography 
505 8 |a Application of WEB-GIS for Dissemination and 3D Visualization of Larege-Volume LIDAR Data -- Design and Evaluation of WEBGL-BASED Heat Map Visualization for Big Point Data -- Sparse Big Data Problem: A Case Study of Czech Graffiti Crimes -- Surveying of Open Pit Mine Using Low-Cost Aerial Photogrammetry -- Models for Relocation of Emergency Medical Stations -- The Possibilities of Big GIS Data Processing on the Desktop Computers -- Creating Large Size of Data with Apache Hadoop -- Processing LIDAR Data with Apache Hadoop -- Applicability of Support Vector Machines in Landslide Susceptibility Mapping -- Integration of Heterogeneous Data in the Support of the Forest Protection -- Structural Concept 
520 |a This edited volume gathers the proceedings of the Symposium GIS Ostrava 2016, the Rise of Big Spatial Data, held at the Technical University of Ostrava, Czech Republic, March 16-18, 2016. Combining theoretical papers and applications by authors from around the globe, it summarises the latest research findings in the area of big spatial data and key problems related to its utilisation. Welcome to dawn of the big data era: though it's in sight, it isn't quite here yet. Big spatial data is characterised by three main features: volume beyond the limit of usual geo-processing, velocity higher than that available using conventional processes, and variety, combining more diverse geodata sources than usual. The popular term denotes a situation in which one or more of these key properties reaches a point at which traditional methods for geodata collection, storage, processing, control, analysis, modelling, validation and visualisation fail to provide effective solutions.  
650 4 |a Geographic information systems 
650 4 |a Big data 
650 4 |a Geospatial data 
650 7 |a Big data  |2 fast 
650 7 |a Geographic information systems  |2 fast 
650 7 |a Geospatial data  |2 fast 
650 7 |a Geoinformationssystem  |2 gnd 
650 7 |a Geoinformation  |2 gnd 
650 7 |a Geoinformatik  |2 gnd 
650 7 |a Big Data  |2 gnd 
650 7 |a Data Mining  |2 gnd 
700 1 |a Ivan, Igor  |4 edt 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-319-45123-7 
943 1 |a oai:aleph.bib-bvb.de:BVB01-033067838 

Datensatz im Suchindex

_version_ 1819311911860174848
any_adam_object
author2 Ivan, Igor
author2_role edt
author2_variant i i ii
author_facet Ivan, Igor
building Verbundindex
bvnumber BV047683806
classification_rvk ST 630
contents Application of WEB-GIS for Dissemination and 3D Visualization of Larege-Volume LIDAR Data -- Design and Evaluation of WEBGL-BASED Heat Map Visualization for Big Point Data -- Sparse Big Data Problem: A Case Study of Czech Graffiti Crimes -- Surveying of Open Pit Mine Using Low-Cost Aerial Photogrammetry -- Models for Relocation of Emergency Medical Stations -- The Possibilities of Big GIS Data Processing on the Desktop Computers -- Creating Large Size of Data with Apache Hadoop -- Processing LIDAR Data with Apache Hadoop -- Applicability of Support Vector Machines in Landslide Susceptibility Mapping -- Integration of Heterogeneous Data in the Support of the Forest Protection -- Structural Concept
ctrlnum (OCoLC)985603587
(DE-599)BVBBV047683806
discipline Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03046nam a2200445 c 4500</leader><controlfield tag="001">BV047683806</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">220117s2017 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319451220</subfield><subfield code="9">978-3-319-45122-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)985603587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047683806</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 630</subfield><subfield code="0">(DE-625)143685:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The rise of big spatial data</subfield><subfield code="c">Igor Ivan [and three others], editors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxvii, 408 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture notes in geoinformation and cartography</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Application of WEB-GIS for Dissemination and 3D Visualization of Larege-Volume LIDAR Data -- Design and Evaluation of WEBGL-BASED Heat Map Visualization for Big Point Data -- Sparse Big Data Problem: A Case Study of Czech Graffiti Crimes -- Surveying of Open Pit Mine Using Low-Cost Aerial Photogrammetry -- Models for Relocation of Emergency Medical Stations -- The Possibilities of Big GIS Data Processing on the Desktop Computers -- Creating Large Size of Data with Apache Hadoop -- Processing LIDAR Data with Apache Hadoop -- Applicability of Support Vector Machines in Landslide Susceptibility Mapping -- Integration of Heterogeneous Data in the Support of the Forest Protection -- Structural Concept</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This edited volume gathers the proceedings of the Symposium GIS Ostrava 2016, the Rise of Big Spatial Data, held at the Technical University of Ostrava, Czech Republic, March 16-18, 2016. Combining theoretical papers and applications by authors from around the globe, it summarises the latest research findings in the area of big spatial data and key problems related to its utilisation. Welcome to dawn of the big data era: though it's in sight, it isn't quite here yet. Big spatial data is characterised by three main features: volume beyond the limit of usual geo-processing, velocity higher than that available using conventional processes, and variety, combining more diverse geodata sources than usual. The popular term denotes a situation in which one or more of these key properties reaches a point at which traditional methods for geodata collection, storage, processing, control, analysis, modelling, validation and visualisation fail to provide effective solutions. </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geographic information systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geospatial data</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geographic information systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geospatial data</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geoinformationssystem</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geoinformation</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geoinformatik</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Big Data</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data Mining</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ivan, Igor</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-45123-7</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033067838</subfield></datafield></record></collection>
id DE-604.BV047683806
illustrated Illustrated
indexdate 2024-12-24T09:04:00Z
institution BVB
isbn 9783319451220
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033067838
oclc_num 985603587
open_access_boolean
owner DE-1050
owner_facet DE-1050
physical xxvii, 408 Seiten Illustrationen, Diagramme 25 cm
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Springer
record_format marc
series2 Lecture notes in geoinformation and cartography
spelling The rise of big spatial data Igor Ivan [and three others], editors
Cham, Switzerland Springer [2017]
xxvii, 408 Seiten Illustrationen, Diagramme 25 cm
txt rdacontent
n rdamedia
nc rdacarrier
Lecture notes in geoinformation and cartography
Application of WEB-GIS for Dissemination and 3D Visualization of Larege-Volume LIDAR Data -- Design and Evaluation of WEBGL-BASED Heat Map Visualization for Big Point Data -- Sparse Big Data Problem: A Case Study of Czech Graffiti Crimes -- Surveying of Open Pit Mine Using Low-Cost Aerial Photogrammetry -- Models for Relocation of Emergency Medical Stations -- The Possibilities of Big GIS Data Processing on the Desktop Computers -- Creating Large Size of Data with Apache Hadoop -- Processing LIDAR Data with Apache Hadoop -- Applicability of Support Vector Machines in Landslide Susceptibility Mapping -- Integration of Heterogeneous Data in the Support of the Forest Protection -- Structural Concept
This edited volume gathers the proceedings of the Symposium GIS Ostrava 2016, the Rise of Big Spatial Data, held at the Technical University of Ostrava, Czech Republic, March 16-18, 2016. Combining theoretical papers and applications by authors from around the globe, it summarises the latest research findings in the area of big spatial data and key problems related to its utilisation. Welcome to dawn of the big data era: though it's in sight, it isn't quite here yet. Big spatial data is characterised by three main features: volume beyond the limit of usual geo-processing, velocity higher than that available using conventional processes, and variety, combining more diverse geodata sources than usual. The popular term denotes a situation in which one or more of these key properties reaches a point at which traditional methods for geodata collection, storage, processing, control, analysis, modelling, validation and visualisation fail to provide effective solutions.
Geographic information systems
Big data
Geospatial data
Big data fast
Geographic information systems fast
Geospatial data fast
Geoinformationssystem gnd
Geoinformation gnd
Geoinformatik gnd
Big Data gnd
Data Mining gnd
Ivan, Igor edt
Erscheint auch als Online-Ausgabe 978-3-319-45123-7
spellingShingle The rise of big spatial data
Application of WEB-GIS for Dissemination and 3D Visualization of Larege-Volume LIDAR Data -- Design and Evaluation of WEBGL-BASED Heat Map Visualization for Big Point Data -- Sparse Big Data Problem: A Case Study of Czech Graffiti Crimes -- Surveying of Open Pit Mine Using Low-Cost Aerial Photogrammetry -- Models for Relocation of Emergency Medical Stations -- The Possibilities of Big GIS Data Processing on the Desktop Computers -- Creating Large Size of Data with Apache Hadoop -- Processing LIDAR Data with Apache Hadoop -- Applicability of Support Vector Machines in Landslide Susceptibility Mapping -- Integration of Heterogeneous Data in the Support of the Forest Protection -- Structural Concept
Geographic information systems
Big data
Geospatial data
Big data fast
Geographic information systems fast
Geospatial data fast
Geoinformationssystem gnd
Geoinformation gnd
Geoinformatik gnd
Big Data gnd
Data Mining gnd
title The rise of big spatial data
title_auth The rise of big spatial data
title_exact_search The rise of big spatial data
title_full The rise of big spatial data Igor Ivan [and three others], editors
title_fullStr The rise of big spatial data Igor Ivan [and three others], editors
title_full_unstemmed The rise of big spatial data Igor Ivan [and three others], editors
title_short The rise of big spatial data
title_sort the rise of big spatial data
topic Geographic information systems
Big data
Geospatial data
Big data fast
Geographic information systems fast
Geospatial data fast
Geoinformationssystem gnd
Geoinformation gnd
Geoinformatik gnd
Big Data gnd
Data Mining gnd
topic_facet Geographic information systems
Big data
Geospatial data
Geoinformationssystem
Geoinformation
Geoinformatik
Big Data
Data Mining
work_keys_str_mv AT ivanigor theriseofbigspatialdata