5G NR and enhancements from R15 to R16

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: [S.l.] Elsevier 2021
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV047657281
003 DE-604
005 20220302
007 t
008 220103s2021 a||| |||| 00||| eng d
015 |a GBC154644  |2 dnb 
020 |z 0323910602  |9 0-323-91060-2 
020 |z 9780323910606  |9 978-0-323-91060-6 
035 |a (OCoLC)1291616485 
035 |a (DE-599)BVBBV047657281 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-739 
084 |a ZN 6560  |0 (DE-625)157572:  |2 rvk 
245 1 0 |a 5G NR and enhancements  |b from R15 to R16 
264 1 |a [S.l.]  |b Elsevier  |c 2021 
300 |a xxv, 1041 Seiten  |b Illustrtionen, Diagramme  |c 23 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a 5G mobile communication systems 
650 7 |a 5G mobile communication systems  |2 fast 
650 0 7 |a 5G  |0 (DE-588)1188755676  |2 gnd  |9 rswk-swf 
650 0 7 |a Mobilfunkstandard  |0 (DE-588)1172778450  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a 5G  |0 (DE-588)1188755676  |D s 
689 0 1 |a Mobilfunkstandard  |0 (DE-588)1172778450  |D s 
689 0 |5 DE-604 
700 1 |a Shen, Jia  |d ca. 20./21. Jh.  |e Sonstige  |0 (DE-588)1252686560  |4 oth 
700 1 |a Du, Zhongda  |e Sonstige  |0 (DE-588)1252687915  |4 oth 
700 1 |a Zhang, Zhi  |d ca. 20./21. Jh.  |e Sonstige  |0 (DE-588)1252688261  |4 oth 
700 1 |a Yang, Ning  |d ca. 20./21. Jh.  |e Sonstige  |0 (DE-588)1252688644  |4 oth 
700 1 |a Tang, Hai  |d ca. 20./21. Jh.  |e Sonstige  |0 (DE-588)1252688903  |4 oth 
776 0 8 |i ebook version 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042182&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-033042182 

Datensatz im Suchindex

_version_ 1804183125804187648
adam_text Contents List of contributors xix Preface 1. xxiii Overview 1 Jinxi Su, Jia Shen, Wendong Liu and Li Guo 1.1 1.2 Introduction Enhanced evolution of new radio over LTE New radio supports a higher band range 4 1.2.2 New radio supports wide bandwidth 5 1.2.3 New radio supports more flexible frame structure 5 1.2.4 New radio supports flexible numerology 6 1.2.5 Low-latency enhancements of air interface by new radio 1.2.7 Multiple input multiple output capability enhancement by new radio 1.2.8 Enhancement of terminal power saving by new radio 1.2.9 Mobility enhancement by new radio 1.2.10 Enhancement of quality of service guarantee by new radio 1.2.11 1.4 Enhancement of core network architecture evolution by new radio 7 8 9 10 12 13 14 New radio s choice of new technology 15 1.3.1 16 New radio s choice on new numerology 1.3.2 New radio s choice on new waveform 17 1.3.3 New radio s choice on new coding 21 1.3.4 New radio s choice on new multiple access 22 Maturity of 5G technology, devices, and equipment 24 1.4.1 The development and maturity of digital devices and chips have well supported the research and development needs of 5G equipment 1.4.2 5G active large-scale antenna equipment can meet the engineering and commercial requirements 1.4.3 1.5 3 1.2.1 1.2.6 Enhancement of reference signals in new radio 1.3 1 Millimeter wave technology—devices and equipment are becoming more and more mature R16 enhancement technology 24 25 27 29 1.5.1 Multiple input multiple output enhancement 29 1.5.2 Ultrareliable and low latency communications enhancement-physical layer 31 v vi 1.5.3 Ultrareliable and low latency communications enhancement high layer 33 1.5.5 33 Two-step RACH 1.5.6 Uplink band switching transmission 33 1.5.7 34 Mobility enhancement 1.5.8 Multi-RAT dual connectivity enhancement 35 1.5.9 36 New radio—vehicle to everything New radio-unlicensed Bandwidth part vii 85 Jia Shen and Nande Zhao 4.1 Basic concept of bandwidth part 85 4.1.1 Motivation from resource allocations with multiple subcarrier spacings 86 4.1.2 Motivations from UE capability and power saving 89 4.1.3 Basic bandwidth part concept 92 4.1.4 Use cases of bandwidth part 36 93 1.6 Summary 37 4.1.5 What if bandwidth part contains synchronization signal/physical broadcast channel block? 95 References 38 4.1.6 Number of simultaneously active bandwidth parts 96 4.1.7 Relation betweenbandwidthpart and carrieraggregation 98 Requirements and scenarios of 5G system 41 4.2 Bandwidth part configuration 101 Wenqiang Tian and Kevin Lin 4.2.1 2.1 41 4.2.2 Granularity of common RB 102 41 4.2.3 104 Current needs and requirements in the 5G era 2.1.1 Requirements of high data rate 2.1.2 Requirements from vertical industries 2.2 Typical scenarios 2.2.1 2.3 3. 4. 32 1.5.4 UE power-saving enhancement 1.5.10 2. Contents Contents Enhanced mobile broadband 101 Reference point—point A 43 4.2.4 The starting point of common RB—RB 0 109 44 4.2.5 Indication method of carrier starting point 109 45 4.2.6 Bandwidth part indication method 110 111 113 2.2.2 Ultrareliable and low latency communications 46 4.2.7 Summary of the basic bandwidth part configuration method 2.2.3 Massive machine type communications 46 4.2.8 Number of configurable bandwidth parts 47 4.2.9 Bandwidth part configuration in the TDDsystem 115 Bandwidth part switching 117 Key indicators of 5G systems 2.4 Summary 51 References 51 5G system architecture 53 5G system architecture 53 3.1.1 5G system architecture requirements 53 3.1.2 5G system architecture and functional entities 3.1.3 5G end-to-end architecture and protocol stack based on 3rd Generation Partnership Project access 4.3 4.3.1 Dynamic switching versus semistatic switching 117 4.3.2 Introduction of bandwidth part activation method based on DCI 118 4.3.3 DCI design for triggering bandwidth part switching—DCI format 119 4.3.4 DCI design for triggering bandwidth part switching— explicitly trigger versus “implicitly trigger Jianhua Liu, Ning Yang and Trieci So 3.1 Introduction of common RB 123 4.3.5 DCI design for triggering bandwidth part switching—bandwidth part indicator 125 56 4.3.6 Introduction of timer-based bandwidth part fallback 127 60 4.3.7 Whether to reuse discontinuous reception timer to implement bandwidth part fallback? 131 4.3.8 Bandwidth part inactivity timer design 135 4.3.9 Timer-baseduplink bandwidth 138 3.1.4 5G end-to-end architecture and protocol stack based on non-3rd Generation Partnership Project access 62 3.1.5 5G system identifiers 64 4.3.10 Time-pattern-based bandwidth part switching 139 69 4.3.11 143 75 4.3.12 Bandwidth part switching delay 3.2 The 5G RAN architecture and deployment options 3.2.1 Description of ΕΝ-DC and SA arechitecture 3.3 Summary 82 References 82 Further reading 83 partswitching Automatic bandwidth part switching 4.4 Bandwidth part in initial access 4.4.1 Introduction of initial DL bandwidth part 145 148 148 viii Contents Contents 4.4.2 Introduction of initial UL bandwidth part 152 4.4.3 Initial DL bandwidth part configuration 154 5.4.4 5.5 4.4.4 Relationship between the initial DL bandwidth part and default 4.4.5 4.5 249 5.5.2 Design of short-PUCCH 250 160 5.5.3 Design of long-PUCCH 253 Impact of bandwidth part on other physical layer designs 161 5.5.4 PUCCH resource allocation 257 4.5.1 Impact of bandwidth part switching delay 161 5.5.5 261 4.5.2 Bandwidth part-dedicated and bandwidth part-common parameter configuration 162 163 5G flexible scheduling 5.6.1 167 Yanan Lin, Jia Shen and Zhenshan Zhao Principle of flexible scheduling 5.1.1 Limitation of LTE system scheduling design 169 171 5.2.1 176 Optimization of resource allocation types in the frequency domain 177 5.2.2 Granularity of resource allocation in the frequency domain 181 5.2.3 Frequency-domain resource indication duringBWP switching 185 5.2.4 Determination of frequency-hoppingresources in BWP 188 5.2.5 194 Introduction to symbol-level scheduling 5.2.6 Reference time for indication of starting symbol 196 5.2.7 Reference SCS for indication of K0 or K2 199 5.2.8 Resource mapping type: type A and type В 200 5.2.9 Time-domain resource allocation 210 Code Block Group 214 5.3.1 214 Introduction of Code Block Group transmission 5.3.2 CBG construction 216 5.3.3 CBG retransmission 217 5.3.4 DL control signaling for CBG-based transmission 219 5.3.5 219 UL control signaling for CBG-based transmission 5.4 Design of NR PDCCH 5.4.1 Considerations of NR PDCCH design 5.4.3 236 264 5.6.2 Semistatic uplink-downlink configuration 266 5.6.3 269 Dynamic slot format Indicator PDSCH rate matching 270 5.7.1 Considerations for introducing rate matching 270 5.7.2 Rate-matching design 274 Summary 279 279 NR initial access 6.1 6.2 283 Cell search 284 6.1.1 Synchronization raster and channel raster 284 6.1.2 Design of SSB 290 6.1.3 Transmission of SSB 295 6.1.4 Position of actually transmitted SSBs and indication methods 300 6.1.5 303 6.3 Cell-search procedure Common control channel duringinitial access 6.2.1 SSB and CORESET#0 multiplexing pattern 6.5 308 309 6.2.2 CORESETttO 313 6.2.3 TypeO-PDCCH search space 316 NR random access 320 6.3.1 Design of NR PRACH 320 6.3.2 NR PRACH resource configuration 326 6.3.3 Power control of PRACH 332 6.4 RRM measurement 223 226 264 Weijie Xu, Chuanfeng He, Wenqiang Tian, Rongyi Hu and Li Guo 223 5.4.2 Control Resource Set Search-space set 6. 202 5.2.10 Multislot transmission Flexible slot References 167 5.1.3 5G resource allocation 5.8 167 5.1.2 Scheduling flexibility in the frequency domain Scheduling flexibility in the time domain PUCCH colliding with other UL channels 5.6 Flexible TDD References 5.3 249 Introduction of short-PUCCH and long-PUCCH 159 163 5.2 Design of NR PUCCH 5.5.1 DL bandwidth part 4.6 Summary 5.1 241 Initial bandwidth part in carrier aggregation 5.7 5. DCI design IX 334 6.4.1 Reference signals for RRM 335 6.4.2 Measurement gap in NR 337 6.4.3 NR intrafrequency and interfrequency measurement 346 6.4.4 Scheduling restrictionscausedby RRMmeasurement 354 Radio link monitoring 356 x Contents Contents 6.5.1 RLM reference signal 356 8.2.2 Frequency-domain matrix design 433 6.5.2 RLM procedure 358 8.2.3 Design of coefficient matrix 435 359 8.2.4 Codebook design for rank = 2 439 8.2.5 441 6.6 Summary 359 References 7. Channel coding 8.3 361 Wenhong Chen, Yingpei Huang, Shengjiang Cui and Li Guo 7.1 7.2 7.3 7.4 Overview of NR channel coding scheme 361 7.1.1 Overview of candidate channel coding schemes 361 7.1.2 Channel coding scheme for data channel 364 7.1.3 Channel coding scheme for the control channel 369 7.1.4 Channel coding scheme for other information 371 Design of polar code 372 7.2.1 372 Background 7.2.2 Sequence design 375 7.2.3 Assistant polar code 376 7.2.4 Code length and rate 377 7.2.5 378 Rate matching and interleaving Design of low-density parity-check codes 380 7.3.1 Basic principles of low-density parity-check codes 380 7.3.2 Design of parity check matrix 382 7.3.3 Design of permutation matrix 386 7.3.4 Design of base graph 386 7.3.5 Lifting size 391 7.3.6 Code block segmentation and codeblock CRC attachment 393 7.3.7 Rate matching and hybrid automatic repeat request process 398 Summary References 8.4 8.5 405 405 Multiple-input multiple-output enhancement andbeam management 413 Zhihua Shi, Wenhong Chen, Yingpei Huang, Jiejiao Tian, Yun Fang, Xin You and Li Guo 8.1 8.2 Codebook design for high rank 8.2.6 еТуре li codebook expression 442 Beam management 442 8.3.1 Overview of analog beam-forming 443 8.3.2 Basic procedures of downlink beam management 445 8.3.3 Downlink beam measurement and reporting 448 8.3.4 Downlink beam indication 456 8.3.5 Basic procedures of uplink beam management 460 8.3.6 Uplink beam measurement 463 8.3.7 Uplink beam indication 463 Beam failure recovery on primary cell(s) 465 8.4.1 Basic procedure of BFR 466 8.4.2 Beam failure detection 468 8.4.3 New beam identification 471 8.4.4 Beam failure recovery request 472 8.4.5 Response from network 473 Beam failure recovery on secondary cell(s) 474 8.5.1 Beam failure detection 476 8.5.2 New beam identification 478 8.5.3 Beam failure recovery request 479 8.5.4 Response from network 482 8.6 Multi-TRP cooperative transmission 8.7 8. xi 9. Basic principles 483 8.6.2 NC—JT transmission based on a single DCI 485 8.6.3 NC—JT transmission based on multi-DCI 488 8.6.4 Diversity transmission based on multi-TRP 496 Summary 502 References 502 Further reading 506 5G radio-frequency design CSI feedback for NR MIMO enhancement 414 Jinqiang Xing, Zhi Zhang, Qifei Liu, Wenhao Zhan, 8.1.1 CSI feedback enhancement in NR 414 Shuai Shao and Kevin Lin 8.1.2 R15 Type і codebook 420 8.1.3 R15 Type II codebook 422 R16 codebook enhancement 429 8.2.1 431 Overview of the еТуре II codebook 483 8.6.1 9.1 9.2 507 New frequency and new bands 507 9.1.1 Spectrum definition 507 9.1.2 Band combination 510 FR1 UE radio-frequency 512 xii Contents Contents 9.2.1 9.3 9.4 9.5 9.2.2 Reference sensitivity 518 11.2 Paging 587 9.2.3 Interference 520 11.3 RRC connection control 591 FR2 radio-frequency and antenna technology 522 11.3.1 Access control 591 9.3.1 UE radio-frequency and antenna architecture 522 11.3.2 RRC connection control 592 9.3.2 Power class 522 9.3.3 Reference sensitivity 528 11.4.1 RRM measurement 602 9.3.4 Beam correspondence 532 11.4.2 Mobility management 609 9.3.5 Max permissible emission 533 11.5 New radio test technology 535 References 9.4.1 SA FR1 radio-frequency test 535 9.4.2 SA FR2 radio-frequency test 537 9.4.3 EN—DC radio-frequency test 542 9.4.4 MIMO OTA Test 543 New radio RF design and challenges NR RF Front-end 548 Interference and Coexistence 549 9.5.3 Design of SRS RF front-end 552 Other new radio challenges Summary Cong Shi, Xin You and Xue Lin 557 10.1 Overview 557 10.2 Service data adaptation protocol 559 10.3 Packet data convergence protocol 561 10.4 Radio link control 565 10.5 Medium access control 566 10.5.1 Random access procedure 568 10.5.2 Data transmission procedure 573 10.5.3 Medium access control packet data units format 576 References 12.1 12.2 11.1.2 Content of system information Broadcast and update of system information 621 12.1.1 Background 621 12.1.2 Network slicing terminologies and principles 624 Network slicing as a service in the 5G system 12.2.1 Network slicing service registration 12.2.2 Traffic routing in Network Slicing 628 629 631 12.4 Network slice in roaming case 637 Network slice specific authentication andauthorization 638 12.6 Summary 639 References 639 13. Quality of service control 641 Yali Guo and Trieci So 13.1 5G quality of service model 641 13.2 End-to-end quality of service control 644 13.2.1 General introduction 644 13.2.2 PCC rule 647 13.2.3 Quality of service flow 649 13.2.4 Quality of service rule 650 579 579 581 General descriptions 12.5 577 579 621 636 Zhongda Du, Shukun Wang, Haitao Li, Xin You and Yongsheng Shi 11.1.1 620 Network slice congestion control 13.3 System information broadcast 620 12.3 577 11. Control plan design Summary 602 Haorui Yang, Trieci So and Yang Xu 554 10. User plane protocol design RRM measurement and mobility management 12. 5G network slicing 553 555 Summary 11.4 548 9.5.2 References 11.1 583 514 9.5.4 10.6 Acquisition and validity of system information High-power UE 9.5.1 9.6 11.1.3 xiii 13.4 Quality of service parameters 651 13.3.1 5G quality of service identifier and the quality of service characteristics 651 13.3.2 Allocation and retention priority 655 13.3.3 Bitrate-related parameters 656 Reflective quality of service 13.4.1 Usage of reflective quality of service in the 5G system 657 657 XIV Contents Contents 13.4.2 The mechanism of reflective quality of service in the 5G system 13.5 13.6 Quality of service notification control 13.5.1 Generaldescription of quality of service notification control 13.5.2 Alternative quality of service profile Summary 658 660 660 661 15.4 662 XV 15.3.2 Processing time determination 707 15.3.3 Definition of processing time 710 15.3.4 Out-of-order scheduling/HARQ 711 Data transmission enhancements 713 15.4.1 CQI and MCS 713 References 663 15.4.2 PUSCH enhancement 716 Further reading 663 15.4.3 Time-domain resource determination 718 15.4.4 Frequency hopping 719 15.4.5 UCI multiplexing 719 14. 5G voice 665 15.5 Yang Xu, Jianhua Liu and Trieci So 14.1 14.2 IP multimedia subsystem (IMS) 666 14.1.1 IMS registration 667 14.1.2 IMS call setup 669 14.1.3 Abnormal case handling 671 5G voice solutions and usage scenarios 673 14.2.1 VoNR 674 14.2.2 EPS fallback/RAT fallback 678 14.2.3 Fast return 681 14.2.4 Voice continuity 682 14.3 Emergency call 683 14.4 Summary 683 References 685 15. 5G Ultra-reliableand low-latency communication: PHY layer 687 Jing Xu, Yanan Lin, Bin Liang and Jia Shen 15.1 15.2 687 15.1.1 Introduction to compact downlink control information 687 15.1.2 Compact downlink control information 688 15.1.3 Physical downlink control channel monitoring capability per monitoring span 689 15.1.4 Physical downlink control channel monitoring for CA 690 15.2.1 15.2.2 15.3 15.8 Flexible initial transmission occasion 722 15.5.2 Resource allocation configuration 725 15.5.3 Multiple configured grant transmission 726 15.5.4 Nonorthogonal multiple access 728 Semipersistent transmission 730 15.6.1 Semipersistent transmission enhancement 730 15.6.2 Enhancements on HARQ-ACK feedback 731 Inter-UE multiplexing 733 15.7.1 Multiplexing solutions 734 15.7.2 Signaling design 736 15.7.3 Uplink power adjustment scheme 738 Summary References 738 739 16. Ultra reliability and low latency communication in high layers 16.1 741 692 Multiple HARQ—ACK codebooks 699 15.2.3 Priority indication 702 15.2.4 Intra-UE collision of uplink channels 705 UE processing capability enhancements 707 15.3.1 707 Timing synchronization for industrial ethernet 741 16.1.1 Intra-UE prioritization 747 16.1.2 The conflict between data and data 747 16.2 Dynamic authorization versus configured grant and configured grant versus configured grant 748 16.3 Dynamic authorization versus dynamic authorization 751 16.4 Enhancements to the semipersistent scheduling 752 16.4.1 Support shorter period for semipersistent scheduling resource 752 16.4.2 Configuration of multiple active semipersistent scheduling resource simultaneously 755 16.4.3 Enhancement to the semistatic scheduling resource time-domain position determination formula 756 16.4.4 Redefine hybrid automatic repeat request ID 758 691 Multiple FIARQ—ACK feedbacks in a slot- and subslot-based PUCCH Introduce of processing capacity 15.7 722 15.5.1 Zhe Fu, Yang Liu and Qianxi Lu Physical downlink control channel enhancement UCI enhancements 15.6 Configured grant transmission 16.3.1 The conflict between data and schedulingrequest 751 xvi Contents Contents 16.5 Enhancement to packet data convergence protocol data packet duplication 16.5.1 16.5.2 759 R15 new radio packet data convergence protocol data duplication mechanism 759 Enhancement on duplication transmissionin R16 761 16.5.3 The concept of UE autonomous duplication transmission 16.6 Ethernet header compression 764 16.7 Summary 767 References 769 Zhenshan Zhao, Shichang Zhang, Qianxi Lu, Yi Ding and Kevin Lin 17.1 NR—V2X slot structure and physical channel 17.2 17.3 18.6 769 17.1.1 Basic parameters 769 17.1.2 Sidelink slot structure 771 17.1.3 18.5 768 17. 5GV2X Physical sidelink channel and sidelink signal Sidelink resource allocation 775 790 17.2.1 Resource allocation In time domain andfrequency domain 17.2.2 Sidelink dynamic resource allocation in resource allocation Mode 1 790 791 17.2.3 Sidelink configured grant In resource allocation Mode 1 795 18.7 856 18.3.4 Random access 859 Wideband operation in NR-unlicensed 18.4.2 PDCCH monitoring enhancement 869 18.4.3 Enhancement on physical uplink control channel 879 887 18.5.1 Hybrid automatic repeat request mechanism 887 18.5.2 Hybrid automatic repeat request acknowledgment codebook 893 18.5.3 Multiple physical uplink shared channelscheduling 907 NR-unlicensed with configured grant physical uplink shared channel 908 18.6.1 Configured grant resource configuration 908 18.6.2 Configured grant-uplink control information and configured grant repetition 912 18.6.3 Configured grant-downlink feedback information 916 18.6.4 Configured grant retransmission timer Summary 919 923 798 Zhisong Zuo, Weijie Xu, Yi Hu and Kevin Lin 19.1 17.3.1 Sidelink HARQ feedback 809 17.3.2 Sidelink HARQ feedback reporting In Mode 1 815 17.3.3 Sidelink measurement and feedback 816 Requirements and evaluation of power-saving techniques for 5G 923 19.1.1 Power-saving requirements for 5G terminals 923 19.1.2 Candidate power-saving techniques 924 19.1.3 Evaluation methodology for power-saving 934 19.1.4 Evaluation results and selected terminal power-saving techniques 937 821 823 Hao Lin, Zuomin Wu, Chuanfeng He, Cong Shi and Kevin Lin Introduction 823 Power-saving signal design and itsimpact onDRX 941 19.2.1 The technical principle of power-saving signal 941 19.2.2 Power-saving signal in R16 942 19.2.3 Impact of power-saving signal on DRX 948 Cross-slot scheduling 950 19.3.1 Technical principles of cross-slot scheduling 950 19.3.2 Flexible scheduling mechanism for cross-slotscheduling 954 19.3.3 Processing of dynamic indicating cross-slot scheduling 955 19.3.4 Application timing In cross-slot scheduling 957 842 19.3.5 Error handling in cross-slot scheduling 958 Initial access procedure 846 19.3.6 18.3.1 846 Impact of cross-slot scheduling on uplink/downlink measurement 959 Channel sensing 824 18.2.1 825 18.2.2 18.2.3 18.2.4 Overview of channel access procedure Dynamic channel-access procedure Semistatic channel-access procedure Persistent uplink listen before talk detection and recovery mechanism SS/PBCH Block transmission 831 839 19.3 918 919 809 18. 5G NR in the unlicensed spectrum 863 Hybrid automatic repeat request and scheduling 19. 5G terminal power-saving 818 863 18.4.1 References 19.2 18.3 852 Remaining minimum system message monitoring 17.2.4 Sldelink resource allocation Mode 2 References 18.2 Master information block 18.3.3 Sidelink physical layer procedure 17.3.4 Sidelink power control 18.1 18.3.2 18.4 Wideband operation and physical channel enhancements 763 xvii xviii Contents 19.3.7 19.4 19.5 19.6 BWP switching in cross-slot scheduling 962 19.4.1 Impacts of RX and IX antennas on energy consumption 962 19.4.2 DL MIMO layer restriction 964 19.4.3 UL MIMO layer restriction 964 SCell dormancy 965 19.5.1 Multicarrier power-saving based oncarrier aggregation 965 19.5.2 Power-saving mechanism of SCeil (secondary carrier) 966 19.5.3 Secondary cell (carrier) dormancy trigger outside DRX active time 968 19.5.4 SCell dormancy trigger of SCell inDRX active time 969 RRM measurement relaxation 970 19.6.1 Power-saving requirement in RRCJDLE or RRCJNACTIVE mode 970 19.6.2 Relaxed measurement criterion 971 19.6.3 Relaxed measurement method 973 19.7 Terminal assistance information for power-saving 19.7.1 19.8 960 MIMO layer restriction Terminal assistance informationprocedure 974 974 19.7.2 Terminal assistance Information content 976 Summary 978 References 978 Further reading 979 20. Prospect of R17 and B5G/6G 981 Zhongda Du, Jia Shen, Han Xiao and Li Guo 20.1 Introduction to Release 17 981 20.1.1 989 20.2 Technologies targeting high data rate 1001 20.3 1004 Coverage extension technology 20.4 Vertical application enabling technology 1006 20.5 1009 Summary References Index Prospect of B5G/6G 1009 1013
adam_txt Contents List of contributors xix Preface 1. xxiii Overview 1 Jinxi Su, Jia Shen, Wendong Liu and Li Guo 1.1 1.2 Introduction Enhanced evolution of new radio over LTE New radio supports a higher band range 4 1.2.2 New radio supports wide bandwidth 5 1.2.3 New radio supports more flexible frame structure 5 1.2.4 New radio supports flexible numerology 6 1.2.5 Low-latency enhancements of air interface by new radio 1.2.7 Multiple input multiple output capability enhancement by new radio 1.2.8 Enhancement of terminal power saving by new radio 1.2.9 Mobility enhancement by new radio 1.2.10 Enhancement of quality of service guarantee by new radio 1.2.11 1.4 Enhancement of core network architecture evolution by new radio 7 8 9 10 12 13 14 New radio's choice of new technology 15 1.3.1 16 New radio's choice on new numerology 1.3.2 New radio's choice on new waveform 17 1.3.3 New radio's choice on new coding 21 1.3.4 New radio's choice on new multiple access 22 Maturity of 5G technology, devices, and equipment 24 1.4.1 The development and maturity of digital devices and chips have well supported the research and development needs of 5G equipment 1.4.2 5G active large-scale antenna equipment can meet the engineering and commercial requirements 1.4.3 1.5 3 1.2.1 1.2.6 Enhancement of reference signals in new radio 1.3 1 Millimeter wave technology—devices and equipment are becoming more and more mature R16 enhancement technology 24 25 27 29 1.5.1 Multiple input multiple output enhancement 29 1.5.2 Ultrareliable and low latency communications enhancement-physical layer 31 v vi 1.5.3 Ultrareliable and low latency communications enhancement high layer 33 1.5.5 33 Two-step RACH 1.5.6 Uplink band switching transmission 33 1.5.7 34 Mobility enhancement 1.5.8 Multi-RAT dual connectivity enhancement 35 1.5.9 36 New radio—vehicle to everything New radio-unlicensed Bandwidth part vii 85 Jia Shen and Nande Zhao 4.1 Basic concept of bandwidth part 85 4.1.1 Motivation from resource allocations with multiple subcarrier spacings 86 4.1.2 Motivations from UE capability and power saving 89 4.1.3 Basic bandwidth part concept 92 4.1.4 Use cases of bandwidth part 36 93 1.6 Summary 37 4.1.5 What if bandwidth part contains synchronization signal/physical broadcast channel block? 95 References 38 4.1.6 Number of simultaneously active bandwidth parts 96 4.1.7 Relation betweenbandwidthpart and carrieraggregation 98 Requirements and scenarios of 5G system 41 4.2 Bandwidth part configuration 101 Wenqiang Tian and Kevin Lin 4.2.1 2.1 41 4.2.2 Granularity of common RB 102 41 4.2.3 104 Current needs and requirements in the 5G era 2.1.1 Requirements of high data rate 2.1.2 Requirements from vertical industries 2.2 Typical scenarios 2.2.1 2.3 3. 4. 32 1.5.4 UE power-saving enhancement 1.5.10 2. Contents Contents Enhanced mobile broadband 101 Reference point—point A 43 4.2.4 The starting point of common RB—RB 0 109 44 4.2.5 Indication method of carrier starting point 109 45 4.2.6 Bandwidth part indication method 110 111 113 2.2.2 Ultrareliable and low latency communications 46 4.2.7 Summary of the basic bandwidth part configuration method 2.2.3 Massive machine type communications 46 4.2.8 Number of configurable bandwidth parts 47 4.2.9 Bandwidth part configuration in the TDDsystem 115 Bandwidth part switching 117 Key indicators of 5G systems 2.4 Summary 51 References 51 5G system architecture 53 5G system architecture 53 3.1.1 5G system architecture requirements 53 3.1.2 5G system architecture and functional entities 3.1.3 5G end-to-end architecture and protocol stack based on 3rd Generation Partnership Project access 4.3 4.3.1 Dynamic switching versus semistatic switching 117 4.3.2 Introduction of bandwidth part activation method based on DCI 118 4.3.3 DCI design for triggering bandwidth part switching—DCI format 119 4.3.4 DCI design for triggering bandwidth part switching—"explicitly trigger" versus “implicitly trigger" Jianhua Liu, Ning Yang and Trieci So 3.1 Introduction of common RB 123 4.3.5 DCI design for triggering bandwidth part switching—bandwidth part indicator 125 56 4.3.6 Introduction of timer-based bandwidth part fallback 127 60 4.3.7 Whether to reuse discontinuous reception timer to implement bandwidth part fallback? 131 4.3.8 Bandwidth part inactivity timer design 135 4.3.9 Timer-baseduplink bandwidth 138 3.1.4 5G end-to-end architecture and protocol stack based on non-3rd Generation Partnership Project access 62 3.1.5 5G system identifiers 64 4.3.10 Time-pattern-based bandwidth part switching 139 69 4.3.11 143 75 4.3.12 Bandwidth part switching delay 3.2 The 5G RAN architecture and deployment options 3.2.1 Description of ΕΝ-DC and SA arechitecture 3.3 Summary 82 References 82 Further reading 83 partswitching Automatic bandwidth part switching 4.4 Bandwidth part in initial access 4.4.1 Introduction of initial DL bandwidth part 145 148 148 viii Contents Contents 4.4.2 Introduction of initial UL bandwidth part 152 4.4.3 Initial DL bandwidth part configuration 154 5.4.4 5.5 4.4.4 Relationship between the initial DL bandwidth part and default 4.4.5 4.5 249 5.5.2 Design of short-PUCCH 250 160 5.5.3 Design of long-PUCCH 253 Impact of bandwidth part on other physical layer designs 161 5.5.4 PUCCH resource allocation 257 4.5.1 Impact of bandwidth part switching delay 161 5.5.5 261 4.5.2 Bandwidth part-dedicated and bandwidth part-common parameter configuration 162 163 5G flexible scheduling 5.6.1 167 Yanan Lin, Jia Shen and Zhenshan Zhao Principle of flexible scheduling 5.1.1 Limitation of LTE system scheduling design 169 171 5.2.1 176 Optimization of resource allocation types in the frequency domain 177 5.2.2 Granularity of resource allocation in the frequency domain 181 5.2.3 Frequency-domain resource indication duringBWP switching 185 5.2.4 Determination of frequency-hoppingresources in BWP 188 5.2.5 194 Introduction to symbol-level scheduling 5.2.6 Reference time for indication of starting symbol 196 5.2.7 Reference SCS for indication of K0 or K2 199 5.2.8 Resource mapping type: type A and type В 200 5.2.9 Time-domain resource allocation 210 Code Block Group 214 5.3.1 214 Introduction of Code Block Group transmission 5.3.2 CBG construction 216 5.3.3 CBG retransmission 217 5.3.4 DL control signaling for CBG-based transmission 219 5.3.5 219 UL control signaling for CBG-based transmission 5.4 Design of NR PDCCH 5.4.1 Considerations of NR PDCCH design 5.4.3 236 264 5.6.2 Semistatic uplink-downlink configuration 266 5.6.3 269 Dynamic slot format Indicator PDSCH rate matching 270 5.7.1 Considerations for introducing rate matching 270 5.7.2 Rate-matching design 274 Summary 279 279 NR initial access 6.1 6.2 283 Cell search 284 6.1.1 Synchronization raster and channel raster 284 6.1.2 Design of SSB 290 6.1.3 Transmission of SSB 295 6.1.4 Position of actually transmitted SSBs and indication methods 300 6.1.5 303 6.3 Cell-search procedure Common control channel duringinitial access 6.2.1 SSB and CORESET#0 multiplexing pattern 6.5 308 309 6.2.2 CORESETttO 313 6.2.3 TypeO-PDCCH search space 316 NR random access 320 6.3.1 Design of NR PRACH 320 6.3.2 NR PRACH resource configuration 326 6.3.3 Power control of PRACH 332 6.4 RRM measurement 223 226 264 Weijie Xu, Chuanfeng He, Wenqiang Tian, Rongyi Hu and Li Guo 223 5.4.2 Control Resource Set Search-space set 6. 202 5.2.10 Multislot transmission Flexible slot References 167 5.1.3 5G resource allocation 5.8 167 5.1.2 Scheduling flexibility in the frequency domain Scheduling flexibility in the time domain PUCCH colliding with other UL channels 5.6 Flexible TDD References 5.3 249 Introduction of short-PUCCH and long-PUCCH 159 163 5.2 Design of NR PUCCH 5.5.1 DL bandwidth part 4.6 Summary 5.1 241 Initial bandwidth part in carrier aggregation 5.7 5. DCI design IX 334 6.4.1 Reference signals for RRM 335 6.4.2 Measurement gap in NR 337 6.4.3 NR intrafrequency and interfrequency measurement 346 6.4.4 Scheduling restrictionscausedby RRMmeasurement 354 Radio link monitoring 356 x Contents Contents 6.5.1 RLM reference signal 356 8.2.2 Frequency-domain matrix design 433 6.5.2 RLM procedure 358 8.2.3 Design of coefficient matrix 435 359 8.2.4 Codebook design for rank = 2 439 8.2.5 441 6.6 Summary 359 References 7. Channel coding 8.3 361 Wenhong Chen, Yingpei Huang, Shengjiang Cui and Li Guo 7.1 7.2 7.3 7.4 Overview of NR channel coding scheme 361 7.1.1 Overview of candidate channel coding schemes 361 7.1.2 Channel coding scheme for data channel 364 7.1.3 Channel coding scheme for the control channel 369 7.1.4 Channel coding scheme for other information 371 Design of polar code 372 7.2.1 372 Background 7.2.2 Sequence design 375 7.2.3 Assistant polar code 376 7.2.4 Code length and rate 377 7.2.5 378 Rate matching and interleaving Design of low-density parity-check codes 380 7.3.1 Basic principles of low-density parity-check codes 380 7.3.2 Design of parity check matrix 382 7.3.3 Design of permutation matrix 386 7.3.4 Design of base graph 386 7.3.5 Lifting size 391 7.3.6 Code block segmentation and codeblock CRC attachment 393 7.3.7 Rate matching and hybrid automatic repeat request process 398 Summary References 8.4 8.5 405 405 Multiple-input multiple-output enhancement andbeam management 413 Zhihua Shi, Wenhong Chen, Yingpei Huang, Jiejiao Tian, Yun Fang, Xin You and Li Guo 8.1 8.2 Codebook design for high rank 8.2.6 еТуре li codebook expression 442 Beam management 442 8.3.1 Overview of analog beam-forming 443 8.3.2 Basic procedures of downlink beam management 445 8.3.3 Downlink beam measurement and reporting 448 8.3.4 Downlink beam indication 456 8.3.5 Basic procedures of uplink beam management 460 8.3.6 Uplink beam measurement 463 8.3.7 Uplink beam indication 463 Beam failure recovery on primary cell(s) 465 8.4.1 Basic procedure of BFR 466 8.4.2 Beam failure detection 468 8.4.3 New beam identification 471 8.4.4 Beam failure recovery request 472 8.4.5 Response from network 473 Beam failure recovery on secondary cell(s) 474 8.5.1 Beam failure detection 476 8.5.2 New beam identification 478 8.5.3 Beam failure recovery request 479 8.5.4 Response from network 482 8.6 Multi-TRP cooperative transmission 8.7 8. xi 9. Basic principles 483 8.6.2 NC—JT transmission based on a single DCI 485 8.6.3 NC—JT transmission based on multi-DCI 488 8.6.4 Diversity transmission based on multi-TRP 496 Summary 502 References 502 Further reading 506 5G radio-frequency design CSI feedback for NR MIMO enhancement 414 Jinqiang Xing, Zhi Zhang, Qifei Liu, Wenhao Zhan, 8.1.1 CSI feedback enhancement in NR 414 Shuai Shao and Kevin Lin 8.1.2 R15 Type і codebook 420 8.1.3 R15 Type II codebook 422 R16 codebook enhancement 429 8.2.1 431 Overview of the еТуре II codebook 483 8.6.1 9.1 9.2 507 New frequency and new bands 507 9.1.1 Spectrum definition 507 9.1.2 Band combination 510 FR1 UE radio-frequency 512 xii Contents Contents 9.2.1 9.3 9.4 9.5 9.2.2 Reference sensitivity 518 11.2 Paging 587 9.2.3 Interference 520 11.3 RRC connection control 591 FR2 radio-frequency and antenna technology 522 11.3.1 Access control 591 9.3.1 UE radio-frequency and antenna architecture 522 11.3.2 RRC connection control 592 9.3.2 Power class 522 9.3.3 Reference sensitivity 528 11.4.1 RRM measurement 602 9.3.4 Beam correspondence 532 11.4.2 Mobility management 609 9.3.5 Max permissible emission 533 11.5 New radio test technology 535 References 9.4.1 SA FR1 radio-frequency test 535 9.4.2 SA FR2 radio-frequency test 537 9.4.3 EN—DC radio-frequency test 542 9.4.4 MIMO OTA Test 543 New radio RF design and challenges NR RF Front-end 548 Interference and Coexistence 549 9.5.3 Design of SRS RF front-end 552 Other new radio challenges Summary Cong Shi, Xin You and Xue Lin 557 10.1 Overview 557 10.2 Service data adaptation protocol 559 10.3 Packet data convergence protocol 561 10.4 Radio link control 565 10.5 Medium access control 566 10.5.1 Random access procedure 568 10.5.2 Data transmission procedure 573 10.5.3 Medium access control packet data units format 576 References 12.1 12.2 11.1.2 Content of system information Broadcast and update of system information 621 12.1.1 Background 621 12.1.2 Network slicing terminologies and principles 624 Network slicing as a service in the 5G system 12.2.1 Network slicing service registration 12.2.2 Traffic routing in Network Slicing 628 629 631 12.4 Network slice in roaming case 637 Network slice specific authentication andauthorization 638 12.6 Summary 639 References 639 13. Quality of service control 641 Yali Guo and Trieci So 13.1 5G quality of service model 641 13.2 End-to-end quality of service control 644 13.2.1 General introduction 644 13.2.2 PCC rule 647 13.2.3 Quality of service flow 649 13.2.4 Quality of service rule 650 579 579 581 General descriptions 12.5 577 579 621 636 Zhongda Du, Shukun Wang, Haitao Li, Xin You and Yongsheng Shi 11.1.1 620 Network slice congestion control 13.3 System information broadcast 620 12.3 577 11. Control plan design Summary 602 Haorui Yang, Trieci So and Yang Xu 554 10. User plane protocol design RRM measurement and mobility management 12. 5G network slicing 553 555 Summary 11.4 548 9.5.2 References 11.1 583 514 9.5.4 10.6 Acquisition and validity of system information High-power UE 9.5.1 9.6 11.1.3 xiii 13.4 Quality of service parameters 651 13.3.1 5G quality of service identifier and the quality of service characteristics 651 13.3.2 Allocation and retention priority 655 13.3.3 Bitrate-related parameters 656 Reflective quality of service 13.4.1 Usage of reflective quality of service in the 5G system 657 657 XIV Contents Contents 13.4.2 The mechanism of reflective quality of service in the 5G system 13.5 13.6 Quality of service notification control 13.5.1 Generaldescription of quality of service notification control 13.5.2 Alternative quality of service profile Summary 658 660 660 661 15.4 662 XV 15.3.2 Processing time determination 707 15.3.3 Definition of processing time 710 15.3.4 Out-of-order scheduling/HARQ 711 Data transmission enhancements 713 15.4.1 CQI and MCS 713 References 663 15.4.2 PUSCH enhancement 716 Further reading 663 15.4.3 Time-domain resource determination 718 15.4.4 Frequency hopping 719 15.4.5 UCI multiplexing 719 14. 5G voice 665 15.5 Yang Xu, Jianhua Liu and Trieci So 14.1 14.2 IP multimedia subsystem (IMS) 666 14.1.1 IMS registration 667 14.1.2 IMS call setup 669 14.1.3 Abnormal case handling 671 5G voice solutions and usage scenarios 673 14.2.1 VoNR 674 14.2.2 EPS fallback/RAT fallback 678 14.2.3 Fast return 681 14.2.4 Voice continuity 682 14.3 Emergency call 683 14.4 Summary 683 References 685 15. 5G Ultra-reliableand low-latency communication: PHY layer 687 Jing Xu, Yanan Lin, Bin Liang and Jia Shen 15.1 15.2 687 15.1.1 Introduction to compact downlink control information 687 15.1.2 Compact downlink control information 688 15.1.3 Physical downlink control channel monitoring capability per monitoring span 689 15.1.4 Physical downlink control channel monitoring for CA 690 15.2.1 15.2.2 15.3 15.8 Flexible initial transmission occasion 722 15.5.2 Resource allocation configuration 725 15.5.3 Multiple configured grant transmission 726 15.5.4 Nonorthogonal multiple access 728 Semipersistent transmission 730 15.6.1 Semipersistent transmission enhancement 730 15.6.2 Enhancements on HARQ-ACK feedback 731 Inter-UE multiplexing 733 15.7.1 Multiplexing solutions 734 15.7.2 Signaling design 736 15.7.3 Uplink power adjustment scheme 738 Summary References 738 739 16. Ultra reliability and low latency communication in high layers 16.1 741 692 Multiple HARQ—ACK codebooks 699 15.2.3 Priority indication 702 15.2.4 Intra-UE collision of uplink channels 705 UE processing capability enhancements 707 15.3.1 707 Timing synchronization for industrial ethernet 741 16.1.1 Intra-UE prioritization 747 16.1.2 The conflict between data and data 747 16.2 Dynamic authorization versus configured grant and configured grant versus configured grant 748 16.3 Dynamic authorization versus dynamic authorization 751 16.4 Enhancements to the semipersistent scheduling 752 16.4.1 Support shorter period for semipersistent scheduling resource 752 16.4.2 Configuration of multiple active semipersistent scheduling resource simultaneously 755 16.4.3 Enhancement to the semistatic scheduling resource time-domain position determination formula 756 16.4.4 Redefine hybrid automatic repeat request ID 758 691 Multiple FIARQ—ACK feedbacks in a slot- and subslot-based PUCCH Introduce of processing capacity 15.7 722 15.5.1 Zhe Fu, Yang Liu and Qianxi Lu Physical downlink control channel enhancement UCI enhancements 15.6 Configured grant transmission 16.3.1 The conflict between data and schedulingrequest 751 xvi Contents Contents 16.5 Enhancement to packet data convergence protocol data packet duplication 16.5.1 16.5.2 759 R15 new radio packet data convergence protocol data duplication mechanism 759 Enhancement on duplication transmissionin R16 761 16.5.3 The concept of UE autonomous duplication transmission 16.6 Ethernet header compression 764 16.7 Summary 767 References 769 Zhenshan Zhao, Shichang Zhang, Qianxi Lu, Yi Ding and Kevin Lin 17.1 NR—V2X slot structure and physical channel 17.2 17.3 18.6 769 17.1.1 Basic parameters 769 17.1.2 Sidelink slot structure 771 17.1.3 18.5 768 17. 5GV2X Physical sidelink channel and sidelink signal Sidelink resource allocation 775 790 17.2.1 Resource allocation In time domain andfrequency domain 17.2.2 Sidelink dynamic resource allocation in resource allocation Mode 1 790 791 17.2.3 Sidelink configured grant In resource allocation Mode 1 795 18.7 856 18.3.4 Random access 859 Wideband operation in NR-unlicensed 18.4.2 PDCCH monitoring enhancement 869 18.4.3 Enhancement on physical uplink control channel 879 887 18.5.1 Hybrid automatic repeat request mechanism 887 18.5.2 Hybrid automatic repeat request acknowledgment codebook 893 18.5.3 Multiple physical uplink shared channelscheduling 907 NR-unlicensed with configured grant physical uplink shared channel 908 18.6.1 Configured grant resource configuration 908 18.6.2 Configured grant-uplink control information and configured grant repetition 912 18.6.3 Configured grant-downlink feedback information 916 18.6.4 Configured grant retransmission timer Summary 919 923 798 Zhisong Zuo, Weijie Xu, Yi Hu and Kevin Lin 19.1 17.3.1 Sidelink HARQ feedback 809 17.3.2 Sidelink HARQ feedback reporting In Mode 1 815 17.3.3 Sidelink measurement and feedback 816 Requirements and evaluation of power-saving techniques for 5G 923 19.1.1 Power-saving requirements for 5G terminals 923 19.1.2 Candidate power-saving techniques 924 19.1.3 Evaluation methodology for power-saving 934 19.1.4 Evaluation results and selected terminal power-saving techniques 937 821 823 Hao Lin, Zuomin Wu, Chuanfeng He, Cong Shi and Kevin Lin Introduction 823 Power-saving signal design and itsimpact onDRX 941 19.2.1 The technical principle of power-saving signal 941 19.2.2 Power-saving signal in R16 942 19.2.3 Impact of power-saving signal on DRX 948 Cross-slot scheduling 950 19.3.1 Technical principles of cross-slot scheduling 950 19.3.2 Flexible scheduling mechanism for cross-slotscheduling 954 19.3.3 Processing of dynamic indicating cross-slot scheduling 955 19.3.4 Application timing In cross-slot scheduling 957 842 19.3.5 Error handling in cross-slot scheduling 958 Initial access procedure 846 19.3.6 18.3.1 846 Impact of cross-slot scheduling on uplink/downlink measurement 959 Channel sensing 824 18.2.1 825 18.2.2 18.2.3 18.2.4 Overview of channel access procedure Dynamic channel-access procedure Semistatic channel-access procedure Persistent uplink listen before talk detection and recovery mechanism SS/PBCH Block transmission 831 839 19.3 918 919 809 18. 5G NR in the unlicensed spectrum 863 Hybrid automatic repeat request and scheduling 19. 5G terminal power-saving 818 863 18.4.1 References 19.2 18.3 852 Remaining minimum system message monitoring 17.2.4 Sldelink resource allocation Mode 2 References 18.2 Master information block 18.3.3 Sidelink physical layer procedure 17.3.4 Sidelink power control 18.1 18.3.2 18.4 Wideband operation and physical channel enhancements 763 xvii xviii Contents 19.3.7 19.4 19.5 19.6 BWP switching in cross-slot scheduling 962 19.4.1 Impacts of RX and IX antennas on energy consumption 962 19.4.2 DL MIMO layer restriction 964 19.4.3 UL MIMO layer restriction 964 SCell dormancy 965 19.5.1 Multicarrier power-saving based oncarrier aggregation 965 19.5.2 Power-saving mechanism of SCeil (secondary carrier) 966 19.5.3 Secondary cell (carrier) dormancy trigger outside DRX active time 968 19.5.4 SCell dormancy trigger of SCell inDRX active time 969 RRM measurement relaxation 970 19.6.1 Power-saving requirement in RRCJDLE or RRCJNACTIVE mode 970 19.6.2 Relaxed measurement criterion 971 19.6.3 Relaxed measurement method 973 19.7 Terminal assistance information for power-saving 19.7.1 19.8 960 MIMO layer restriction Terminal assistance informationprocedure 974 974 19.7.2 Terminal assistance Information content 976 Summary 978 References 978 Further reading 979 20. Prospect of R17 and B5G/6G 981 Zhongda Du, Jia Shen, Han Xiao and Li Guo 20.1 Introduction to Release 17 981 20.1.1 989 20.2 Technologies targeting high data rate 1001 20.3 1004 Coverage extension technology 20.4 Vertical application enabling technology 1006 20.5 1009 Summary References Index Prospect of B5G/6G 1009 1013
any_adam_object 1
any_adam_object_boolean 1
author_GND (DE-588)1252686560
(DE-588)1252687915
(DE-588)1252688261
(DE-588)1252688644
(DE-588)1252688903
building Verbundindex
bvnumber BV047657281
classification_rvk ZN 6560
ctrlnum (OCoLC)1291616485
(DE-599)BVBBV047657281
discipline Elektrotechnik / Elektronik / Nachrichtentechnik
discipline_str_mv Elektrotechnik / Elektronik / Nachrichtentechnik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01885nam a2200457 c 4500</leader><controlfield tag="001">BV047657281</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220302 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220103s2021 a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC154644</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0323910602</subfield><subfield code="9">0-323-91060-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780323910606</subfield><subfield code="9">978-0-323-91060-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1291616485</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047657281</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6560</subfield><subfield code="0">(DE-625)157572:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">5G NR and enhancements</subfield><subfield code="b">from R15 to R16</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[S.l.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxv, 1041 Seiten</subfield><subfield code="b">Illustrtionen, Diagramme</subfield><subfield code="c">23 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5G mobile communication systems</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">5G mobile communication systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">5G</subfield><subfield code="0">(DE-588)1188755676</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mobilfunkstandard</subfield><subfield code="0">(DE-588)1172778450</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">5G</subfield><subfield code="0">(DE-588)1188755676</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mobilfunkstandard</subfield><subfield code="0">(DE-588)1172778450</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Jia</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1252686560</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Zhongda</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1252687915</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhi</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1252688261</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Ning</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1252688644</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Hai</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1252688903</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">ebook version</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=033042182&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033042182</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV047657281
illustrated Illustrated
index_date 2024-07-03T18:51:27Z
indexdate 2024-07-10T09:18:29Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033042182
oclc_num 1291616485
open_access_boolean
owner DE-739
owner_facet DE-739
physical xxv, 1041 Seiten Illustrtionen, Diagramme 23 cm
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher Elsevier
record_format marc
spelling 5G NR and enhancements from R15 to R16
[S.l.] Elsevier 2021
xxv, 1041 Seiten Illustrtionen, Diagramme 23 cm
txt rdacontent
n rdamedia
nc rdacarrier
5G mobile communication systems
5G mobile communication systems fast
5G (DE-588)1188755676 gnd rswk-swf
Mobilfunkstandard (DE-588)1172778450 gnd rswk-swf
(DE-588)4143413-4 Aufsatzsammlung gnd-content
5G (DE-588)1188755676 s
Mobilfunkstandard (DE-588)1172778450 s
DE-604
Shen, Jia ca. 20./21. Jh. Sonstige (DE-588)1252686560 oth
Du, Zhongda Sonstige (DE-588)1252687915 oth
Zhang, Zhi ca. 20./21. Jh. Sonstige (DE-588)1252688261 oth
Yang, Ning ca. 20./21. Jh. Sonstige (DE-588)1252688644 oth
Tang, Hai ca. 20./21. Jh. Sonstige (DE-588)1252688903 oth
ebook version
Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042182&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle 5G NR and enhancements from R15 to R16
5G mobile communication systems
5G mobile communication systems fast
5G (DE-588)1188755676 gnd
Mobilfunkstandard (DE-588)1172778450 gnd
subject_GND (DE-588)1188755676
(DE-588)1172778450
(DE-588)4143413-4
title 5G NR and enhancements from R15 to R16
title_auth 5G NR and enhancements from R15 to R16
title_exact_search 5G NR and enhancements from R15 to R16
title_exact_search_txtP 5G NR and enhancements from R15 to R16
title_full 5G NR and enhancements from R15 to R16
title_fullStr 5G NR and enhancements from R15 to R16
title_full_unstemmed 5G NR and enhancements from R15 to R16
title_short 5G NR and enhancements
title_sort 5g nr and enhancements from r15 to r16
title_sub from R15 to R16
topic 5G mobile communication systems
5G mobile communication systems fast
5G (DE-588)1188755676 gnd
Mobilfunkstandard (DE-588)1172778450 gnd
topic_facet 5G mobile communication systems
5G
Mobilfunkstandard
Aufsatzsammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033042182&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT shenjia 5gnrandenhancementsfromr15tor16
AT duzhongda 5gnrandenhancementsfromr15tor16
AT zhangzhi 5gnrandenhancementsfromr15tor16
AT yangning 5gnrandenhancementsfromr15tor16
AT tanghai 5gnrandenhancementsfromr15tor16