Machine learning fundamentals a concise introduction

This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes wide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Jiang, Hui (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press [2021]
Schlagworte:
Online-Zugang:BSB01
FHN01
TUM01
UER01
UPA01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV047655340
003 DE-604
005 20221205
007 cr|uuu---uuuuu
008 211228s2021 |||| o||u| ||||||eng d
020 |a 9781108938051  |c Online  |9 978-1-108-93805-1 
024 7 |a 10.1017/9781108938051  |2 doi 
035 |a (ZDB-20-CBO)CR9781108938051 
035 |a (OCoLC)1291615202 
035 |a (DE-599)BVBBV047655340 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-739  |a DE-29  |a DE-92  |a DE-91 
082 0 |a 006.3/1 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
100 1 |a Jiang, Hui  |e Verfasser  |0 (DE-588)1247636526  |4 aut 
245 1 0 |a Machine learning fundamentals  |b a concise introduction  |c Hui Jiang 
264 1 |a Cambridge  |b Cambridge University Press  |c [2021] 
264 4 |c © 2021 
300 |a 1 Online-Ressource (xviii, 380 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 |a This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely "from scratch" based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts 
650 4 |a Machine learning 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe, Hardcover  |z 978-1-108-83704-0 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe, Paperback  |z 978-1-108-94002-3 
856 4 0 |u https://doi.org/10.1017/9781108938051  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
999 |a oai:aleph.bib-bvb.de:BVB01-033040281 
966 e |u https://doi.org/10.1017/9781108938051  |l BSB01  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108938051  |l FHN01  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108938051  |l TUM01  |p ZDB-20-CBO  |q TUM_Paketkauf_2021  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108938051  |l UER01  |p ZDB-20-CBO  |q UER_PDA_CBO_Kauf_2022  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/9781108938051  |l UPA01  |p ZDB-20-CBO  |q UPA_PDA_CBO_Kauf2021  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2702923
DE-BY-TUM_local_url Verlag
https://doi.org/10.1017/9781108938051
_version_ 1816714876253372416
adam_txt
any_adam_object
any_adam_object_boolean
author Jiang, Hui
author_GND (DE-588)1247636526
author_facet Jiang, Hui
author_role aut
author_sort Jiang, Hui
author_variant h j hj
building Verbundindex
bvnumber BV047655340
classification_rvk ST 300
collection ZDB-20-CBO
ctrlnum (ZDB-20-CBO)CR9781108938051
(OCoLC)1291615202
(DE-599)BVBBV047655340
dewey-full 006.3/1
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/1
dewey-search 006.3/1
dewey-sort 16.3 11
dewey-tens 000 - Computer science, information, general works
discipline Informatik
discipline_str_mv Informatik
doi_str_mv 10.1017/9781108938051
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02909nmm a2200481zc 4500</leader><controlfield tag="001">BV047655340</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211228s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108938051</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-93805-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108938051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108938051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1291615202</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047655340</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Hui</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1247636526</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning fundamentals</subfield><subfield code="b">a concise introduction</subfield><subfield code="c">Hui Jiang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 380 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely "from scratch" based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-108-83704-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-108-94002-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108938051</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033040281</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108938051</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108938051</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108938051</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Paketkauf_2021</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108938051</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108938051</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_PDA_CBO_Kauf2021</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV047655340
illustrated Not Illustrated
index_date 2024-07-03T18:50:58Z
indexdate 2024-11-25T18:02:39Z
institution BVB
isbn 9781108938051
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-033040281
oclc_num 1291615202
open_access_boolean
owner DE-12
DE-739
DE-29
DE-92
DE-91
DE-BY-TUM
owner_facet DE-12
DE-739
DE-29
DE-92
DE-91
DE-BY-TUM
physical 1 Online-Ressource (xviii, 380 Seiten)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
ZDB-20-CBO TUM_Paketkauf_2021
ZDB-20-CBO UER_PDA_CBO_Kauf_2022
ZDB-20-CBO UPA_PDA_CBO_Kauf2021
publishDate 2021
publishDateSearch 2021
publishDateSort 2021
publisher Cambridge University Press
record_format marc
spellingShingle Jiang, Hui
Machine learning fundamentals a concise introduction
Machine learning
Maschinelles Lernen (DE-588)4193754-5 gnd
subject_GND (DE-588)4193754-5
title Machine learning fundamentals a concise introduction
title_auth Machine learning fundamentals a concise introduction
title_exact_search Machine learning fundamentals a concise introduction
title_exact_search_txtP Machine learning fundamentals a concise introduction
title_full Machine learning fundamentals a concise introduction Hui Jiang
title_fullStr Machine learning fundamentals a concise introduction Hui Jiang
title_full_unstemmed Machine learning fundamentals a concise introduction Hui Jiang
title_short Machine learning fundamentals
title_sort machine learning fundamentals a concise introduction
title_sub a concise introduction
topic Machine learning
Maschinelles Lernen (DE-588)4193754-5 gnd
topic_facet Machine learning
Maschinelles Lernen
url https://doi.org/10.1017/9781108938051
work_keys_str_mv AT jianghui machinelearningfundamentalsaconciseintroduction