Fundamentals of high-dimensional statistics with exercises and R labs
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2022]
|
Schriftenreihe: | Springer texts in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047642767 | ||
003 | DE-604 | ||
005 | 20241009 | ||
007 | t| | ||
008 | 211215s2022 xx |||| |||| 00||| eng d | ||
020 | |a 9783030737917 |c hardcover |9 978-3-030-73791-7 | ||
020 | |a 9783030737948 |c softcover |9 978-3-030-73794-8 | ||
035 | |a (OCoLC)1299306894 | ||
035 | |a (DE-599)BVBBV047642767 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-473 |a DE-521 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
084 | |a QH 230 |0 (DE-625)141545: |2 rvk | ||
100 | 1 | |a Lederer, Johannes |d 1984- |e Verfasser |0 (DE-588)1055925775 |4 aut | |
245 | 1 | 0 | |a Fundamentals of high-dimensional statistics |b with exercises and R labs |c Johannes Lederer |
264 | 1 | |a Cham |b Springer |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a XIV, 355 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer texts in statistics | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Big Data | |
650 | 4 | |a Data Structures and Information Theory | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Statistics and Computing/Statistics Programs | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Statistics | |
650 | 4 | |a Big data | |
650 | 4 | |a Data structures (Computer science) | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-73792-4 |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033026971&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033026971 |
Datensatz im Suchindex
_version_ | 1819740533102215168 |
---|---|
adam_text | XIII Contents 1 Introduction........................................................................................................ 1.1 Embracing High-Dimensionality..................................... 1.2 1.3 1.4 1.5 Statistical Limitations of Classical Estimators................................................................... 1.6 1.7 Exercises.................................................................................................................................. R Lab: Least-Squares vs. Ridge Estimation........................................................................ 19 25 1.8 Notes and References........................................................................................................... 34 2 Incorporating Prior Information......................................................................................... Regularization for Increasing the Numerical Stability*................................... Outlook................................................................................................................................... Linear Regression......................... ;........ 1 2 5 10 13 18 37 38 41 45 48 53 63 71 77 2.1 2.2 Overview.................................................. 2.3 Post-Processing Methods..................................................................................................... 2.4 2.5 2.6 2.7 2.8 Hôlder Inequality*................ . .................................................................................. 3 Graphical
Models.......................................................................... 81 3.1 Overview................................................................................................................................ 82 3.2 3.3 Gaussian Graphical Models............................................ 85 87 3.4 3.5 3.6 Neighborhood Selection..................................................................................................... 91 Exercises.................................................................................................................................. 95 R Lab: Estimating a Gene-Gene Coactivation Network................................................. 98 3.7 Notes and References........................................................................................................... 1°7 4 Tuning-Parameter Calibration............................... 1θ9 4.1 Overview................................................................................................................................ 4.2 4.3 4.4 Bounds on the Lasso s Effective Noise............................................................................... HO 113 HO 1շ1 4.5 Exercises.................................................................................................................................. 127 Sparsity-Inducing Prior Functions..................................................................................... Optimality Conditions*........................................................................................................
Exercises............................................................... R Lab: Overfitting.................................................................................................................. Notes and References................................................................................................... —· Maximum Regularized Likelihood Estimation............................................................ Cross-Validation................... . ............................................................................................... Adaptive Validation.............................................................................................................
XIV Contents 46 R Lab: Cross-Validation.................................................................................................. 4.7 Notes and References.................................................................................................... 5 Inference............................................................................................................ 5.1 5.2 One-Step Estimators..................................................................................................... Confidence Intervals..................................................................................................... 5.3 5.4 5.5 Exercises......................................................................................................................... R Lab: Confidence Intervals in Low and High Dimensions........................................... 157 Notes and References.................................................................................................... 166 6 Theory I: Prediction........................................................................................... 169 6.1 6.2 6.3 6.4 Overview........................................................................................................................ Basic Inequalities........................................................................................................... Prediction Guarantees................................................................................................... Prediction Guarantees for Sparse and Weakly Correlated
Models.............................. 170 175 182 192 6.5 6.6 Exercises.......................................................................................................................... 204 Notes and References..................................................................................................... 208 7 Theory 11: Estimation and Support Recovery................................................. 211 7.1 7.2 7.3 7.4 7.5 7.6 Overview......................................................................................................................... Estimation Guarantees in tL·Ioss.................................................................................... Estimation Guarantees in Հ-Խտտ.................................................................................... Support Recovery Guarantees........................................................................................ Exercises........................................................................................................................... Notes and References..................................................................................................... 212 213 218 231 235 237 A Supplementary Information............................................................................ 239 Solutions................................................................................................................ 240 A.l A.2 A.3 A.4 A.5 A.6 A.7 Solutions for ► Chap. 1 ................................................................................................... Solutions
for ► Chap. 2.................................................................................................... Solutions for ► Chap. 3.................................................................................................... Solutions for ► Chap. 4.................................................................................................... Solutions for ► Chap. 5.......................................................................................... Solutions for ► Chap. 6................................................................................. Solutions for ► Chap. 7............................... ................................................................... 240 257 271 2g5 2gg 295 300 В Mathematical Background.................................................................. 3θ9 B.1 B.2 Analysis............................................................................................................................. 3og Matrix Algebra ........................................................................ 131 135 139 140 146 153 Bibliography.................................................................... ........... „„ Index............................ ............... ........................................................................................ 345
|
any_adam_object | 1 |
author | Lederer, Johannes 1984- |
author_GND | (DE-588)1055925775 |
author_facet | Lederer, Johannes 1984- |
author_role | aut |
author_sort | Lederer, Johannes 1984- |
author_variant | j l jl |
building | Verbundindex |
bvnumber | BV047642767 |
classification_rvk | SK 850 QH 230 |
ctrlnum | (OCoLC)1299306894 (DE-599)BVBBV047642767 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01833nam a2200481 c 4500</leader><controlfield tag="001">BV047642767</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241009 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">211215s2022 xx |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030737917</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-3-030-73791-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030737948</subfield><subfield code="c">softcover</subfield><subfield code="9">978-3-030-73794-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1299306894</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047642767</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 230</subfield><subfield code="0">(DE-625)141545:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lederer, Johannes</subfield><subfield code="d">1984-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1055925775</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of high-dimensional statistics</subfield><subfield code="b">with exercises and R labs</subfield><subfield code="c">Johannes Lederer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 355 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer texts in statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Structures and Information Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics and Computing/Statistics Programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data structures (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-73792-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033026971&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033026971</subfield></datafield></record></collection> |
id | DE-604.BV047642767 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T09:02:22Z |
institution | BVB |
isbn | 9783030737917 9783030737948 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033026971 |
oclc_num | 1299306894 |
open_access_boolean | |
owner | DE-11 DE-473 DE-BY-UBG DE-521 |
owner_facet | DE-11 DE-473 DE-BY-UBG DE-521 |
physical | XIV, 355 Seiten Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer |
record_format | marc |
series2 | Springer texts in statistics |
spellingShingle | Lederer, Johannes 1984- Fundamentals of high-dimensional statistics with exercises and R labs Statistical Theory and Methods Big Data Data Structures and Information Theory Artificial Intelligence Statistics and Computing/Statistics Programs Machine Learning Statistics Big data Data structures (Computer science) Artificial intelligence Machine learning |
title | Fundamentals of high-dimensional statistics with exercises and R labs |
title_auth | Fundamentals of high-dimensional statistics with exercises and R labs |
title_exact_search | Fundamentals of high-dimensional statistics with exercises and R labs |
title_full | Fundamentals of high-dimensional statistics with exercises and R labs Johannes Lederer |
title_fullStr | Fundamentals of high-dimensional statistics with exercises and R labs Johannes Lederer |
title_full_unstemmed | Fundamentals of high-dimensional statistics with exercises and R labs Johannes Lederer |
title_short | Fundamentals of high-dimensional statistics |
title_sort | fundamentals of high dimensional statistics with exercises and r labs |
title_sub | with exercises and R labs |
topic | Statistical Theory and Methods Big Data Data Structures and Information Theory Artificial Intelligence Statistics and Computing/Statistics Programs Machine Learning Statistics Big data Data structures (Computer science) Artificial intelligence Machine learning |
topic_facet | Statistical Theory and Methods Big Data Data Structures and Information Theory Artificial Intelligence Statistics and Computing/Statistics Programs Machine Learning Statistics Big data Data structures (Computer science) Artificial intelligence Machine learning |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033026971&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ledererjohannes fundamentalsofhighdimensionalstatisticswithexercisesandrlabs |